Log in

High-Throughput Design of Multi-Principal Element Alloys with Spinodal Decomposition Assisted Microstructures

  • Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Recent studies revealed that multiphase microstructures in Al0.5NbTa0.8Ti1.5V0.2Zr, Fe15Co15Ni20Mn20Cu30 and TiZrNbTa multi-principal element alloys (MPEAs) developed via spinodal decomposition assisted phase transformation pathways offer better properties than single-phase MPEAs. Although spinodal decomposition has been widely studied for the past six decades, it has not been explored in detail as a design strategy to develop multiphase MPEAs. In this work, we illustrate high-throughput CALPHAD calculations necessary to design MPEAs with spinodal decomposition assisted multiphase microstructures by using Fe-Co-Ni-Mn-Cu system as an example. Firstly, the MPEAs that possess single solid solution phase at high temperatures and can undergo spinodal decomposition are identified through solid solution stability analysis and phase equilibrium calculations. The spinodal temperature as a function of alloy composition is visualized through Morral’s constant core component diagrams and the MPEAs of interest are selected based on further phase equilibrium calculations at the ageing temperature. Lastly, the critical features of spinodal decomposition such as the initial compositional modulations are calculated for the chosen alloy compositions. We find that the alloying elements could be divided into three groups: (i) Fe and Co, (ii) Ni and Mn, and (iii) Cu, based on the spinodal decomposition features predicted by the PanHEA database, and the restricted solubility of Cu in Fe and Co has led to the miscibility gap in FCC solid solutions of Fe-Co-Ni-Mn-Cu MPEAs. However, the addition of Ni and Mn is crucial in attaining spinodal microstructures as they aid in shifting the miscibility gap below the solidus curve in these MPEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng., A, 2004, 375–377, p 213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  2. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi After Prolonged Anneals at Intermediate Temperatures, Acta Mater., 2016, 112, p 40–52. https://doi.org/10.1016/j.actamat.2016.04.005

    Article  ADS  Google Scholar 

  3. O. Senkov, D. Isheim, D. Seidman, and A. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy, 2016, 18, p 102. https://doi.org/10.3390/e18030102

    Article  ADS  Google Scholar 

  4. V. Soni, B. Gwalani, O.N. Senkov, B. Viswanathan, T. Alam, D.B. Miracle, and R. Banerjee, Phase Stability as a Function of Temperature in a Refractory High-Entropy Alloy, J. Mater. Res., 2018, 33, p 3235–3246. https://doi.org/10.1557/jmr.2018.223

    Article  ADS  Google Scholar 

  5. T.Y. Liu, J.C. Huang, W.S. Chuang, H.S. Chou, J.Y. Wei, C.Y. Chao, Y.C. Liao, and J.S. Jang, Spinodal Decomposition and Mechanical Response of a TiZrNbTa High-Entropy Alloy, Materials., 2019, 12, p 3508. https://doi.org/10.3390/ma12213508

    Article  ADS  Google Scholar 

  6. Z. Rao, B. Dutta, F. Körmann, W. Lu, X. Zhou, C. Liu, A.K. Silva, U. Wiedwald, M. Spasova, M. Farle, D. Ponge, B. Gault, J. Neugebauer, D. Raabe, and Z. Li, Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition, Adv. Func. Mater., 2021, 31, p 2007668. https://doi.org/10.1002/adfm.202007668

    Article  Google Scholar 

  7. K. Kadirvel, S.R. Koneru, and Y. Wang, Exploration of spinodal decomposition in multi-principal element alloys (MPEAs) using CALPHAD modeling, Scripta Mater., 2022, 214, 114657. https://doi.org/10.1016/j.scriptamat.2022.114657

    Article  Google Scholar 

  8. Thermo-Calc Software TCHEA/High Entropy Alloys database, n.d. thermocalc com/products/databases/high-entropy-alloys/. (accessed April 6, 2022).

  9. Computherm LLC. Pandat software PanHEA/High Entropy Alloy database, n.d. computherm.com/panhea. (accessed April 6, 2022).

  10. D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, and R. Banerjee, Change in the Primary Solidification Phase From Fcc to Bcc -Based B2 in High Entropy or Complex Concentrated Alloys, Scripta Mater., 2017, 127, p 186–190. https://doi.org/10.1016/j.scriptamat.2016.09.023

    Article  Google Scholar 

  11. T. Rieger, J.-M. Joubert, M. Laurent-Brocq, L. Perrière, I. Guillot, and J.-P. Couzinié, Study of the FCC+L12 Two-Phase Region in Complex Concentrated Alloys Based on the Al–Co–Cr–Fe–Ni–Ti System, Materialia., 2020, 14, p 100905. https://doi.org/10.1016/j.mtla.2020.100905

    Article  Google Scholar 

  12. T.E. Whitfield, E.J. Pickering, L.R. Owen, C.N. Jones, H.J. Stone, and N.G. Jones, The Effect of Al on the Formation and Stability of a BCC – B2 Microstructure in a Refractory Metal High Entropy Superalloy System, Materialia., 2020, 13, p 100858. https://doi.org/10.1016/j.mtla.2020.100858

    Article  Google Scholar 

  13. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Accelerated exploration of multi-principal element alloys with solid solution phases, Nature Communicat., 2015. https://doi.org/10.1038/ncomms7529

    Article  Google Scholar 

  14. R. Feng, C. Zhang, M.C. Gao, Z. Pei, F. Zhang, Y. Chen, D. Ma, K. An, J.D. Poplawsky, L. Ouyang, Y. Ren, J.A. Hawk, M. Widom, and P.K. Liaw, High-throughput design of high-performance lightweight high-entropy alloys, Nature Communicat., 2021. https://doi.org/10.1038/s41467-021-24523-9

    Article  Google Scholar 

  15. R. Li, L. **e, W.Y. Wang, P.K. Liaw, and Y. Zhang, High-Throughput Calculations for High-Entropy Alloys: A Brief Review, Frontiers Mater., 2020. https://doi.org/10.3389/fmats.2020.00290

    Article  Google Scholar 

  16. P.L.J. Conway, T.P.C. Klaver, J. Steggo, and E. Ghassemali, High entropy alloys towards industrial applications: High-throughput screening and experimental investigation, Mater. Sci. Eng., A, 2022, 830, p 142297. https://doi.org/10.1016/j.msea.2021.142297

    Article  Google Scholar 

  17. T. Klaver, D. Simonovic, and M. Sluiter, Brute Force Composition Scanning with a CALPHAD Database to Find Low Temperature Body Centered Cubic High Entropy Alloys, Entropy, 2018, 20, p 911. https://doi.org/10.3390/e20120911

    Article  ADS  Google Scholar 

  18. D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, and J. Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 2014, 16, p 494–525. https://doi.org/10.3390/e16010494

    Article  ADS  Google Scholar 

  19. O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, and H.L. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr, Mater. Design., 2018, 139, p 498–511. https://doi.org/10.1016/j.matdes.2017.11.033

    Article  Google Scholar 

  20. J.K. Jensen, B.A. Welk, R.E.A. Williams, J.M. Sosa, D.E. Huber, O.N. Senkov, G.B. Viswanathan, and H.L. Fraser, Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1, Scripta Mater., 2016, 121, p 1–4. https://doi.org/10.1016/j.scriptamat.2016.04.017

    Article  Google Scholar 

  21. S.M. Allen, and J.W. Cahn, Mechanisms of Phase Transformations within the Miscibility Gap of Fe-rich Fe-Al Alloys, Acta Metall., 1976, 24, p 425–437. https://doi.org/10.1016/0001-6160(76)90063-8

    Article  Google Scholar 

  22. W.A.Soffa, D.E.Laughlin, Recent experimental studies of continuous transformations in alloys: An overview, Proceedings of the International Conference on Solid to Solid Phase Transformations (Met.Soc.AIME). (1982) 159–183.

  23. K. Kadirvel, Z. Kloenne, J.K. Jensen, H. Fraser, and Y. Wang, Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys, Appl. Phys. Lett., 2021, 119, p 171905. https://doi.org/10.1063/5.0065522

    Article  ADS  Google Scholar 

  24. Z.T. Kloenne, K. Kadirvel, J.-P. Couzinie, G.B. Viswanathan, Y. Wang, and H.L. Fraser, High temperature phase stability of the compositionally complex alloy AlMo0.5NbTa0.5TiZr, Appl. Phys. Lett., 2021, 119, p 151903. https://doi.org/10.1063/5.0069497

    Article  ADS  Google Scholar 

  25. P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong, W. Ren, Z. Shen, T. Zheng, J. Peng, X. Liang, P. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, and Y.-D. Wang, Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 2021, 373, p 912.

    Article  ADS  Google Scholar 

  26. J.W. Cahn, On spinodal decomposition, Acta Metall., 1961, 9, p 795–801.

    Article  Google Scholar 

  27. A.G. Khachaturyan, Theory of Structural Transformations in Solids, Courier Corporation, 2013.

  28. A.G. Khachaturyan, Soviet Physics, Solid State. 9 (1968).

  29. D. De Fontaine, An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria, J. Phys. Chem. Solids, 1972, 33, p 297–310. https://doi.org/10.1016/0022-3697(72)90011-X

    Article  ADS  Google Scholar 

  30. D.D. Fontaine, An Analysis of Clustering and Ordering in Multicomponent Solid Solutions-Ii Fluctuations and Kinetics, J. Phys. Chem. Solids, 1973, 34, p 1285–1304.

    Article  ADS  Google Scholar 

  31. J.E. Morral, and J.W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 1971, 19, p 1037–1045. https://doi.org/10.1016/0001-6160(71)90036-8

    Article  Google Scholar 

  32. J. E. Morral, Stability limits for ternary regular system, Acta Metallurgica. 20 (1972).

  33. J.E. Morral, and S. Chen, Stability of High Entropy Alloys to Spinodal Decomposition, J. Phase Equilib. Diffus., 2021, 42, p 673–695. https://doi.org/10.1007/s11669-021-00915-8

    Article  Google Scholar 

  34. P. Singh, A.V. Smirnov, and D.D. Johnson, Atomic Short-Range Order and Incipient Long-Range Order in High-Entropy Alloys, Phys. Rev. B, 2015. https://doi.org/10.1103/PhysRevB.91.224204

    Article  Google Scholar 

  35. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multi-Component Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33, p 328–342. https://doi.org/10.1016/j.calphad.2008.08.004

    Article  Google Scholar 

  36. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  Google Scholar 

  37. Baker, Hugh, Okamoto, Hiroaki, ASM Handbook Volume 3: Alloy Phase Diagrams - ASM International, 1992. http://www.asminternational.org/search/-/journal_content/56/10192/25871543/PUBLICATION (accessed June 5, 2017).

  38. D. Orlikowski, C. Sagui, A. Somoza, and C. Roland, Large-scale simulations of phase separation of elastically coherent binary alloy systems, Phys. Rev. B., 1999, 59, p 8646–8659. https://doi.org/10.1103/PhysRevB.59.8646

    Article  ADS  Google Scholar 

  39. A. Onuki, and H. Nishimori, Anomalously Slow Domain Growth Due to A Modulus Inhomogeneity In Phase-Separating Alloys, Phys. Rev. B., 1991, 43, p 13649–13652. https://doi.org/10.1103/PhysRevB.43.13649

    Article  ADS  Google Scholar 

  40. J.L. Li, Z. Li, Q. Wang, C. Dong, and P.K. Liaw, Phase-Field Simulation of coherent BCC/B2 Microstructures in High Entropy Alloys, Acta Mater., 2020, 197, p 10–19. https://doi.org/10.1016/j.actamat.2020.07.030

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the financial support by Air Force Office of Scientific Research (AFOSR) under grant FA9550-20-1-0015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shalini Roy Koneru, Kamalnath Kadirvel or Yunzhi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special tribute issue of the Journal of Phase Equilibria and Diffusion dedicated to the memory of former JPED Editor-in-Chief John Morral. The special issue was organized by Prof. Yongho Sohn, University of Central Florida; Prof. Ji-Cheng Zhao, University of Maryland; Dr. Carelyn Campbell, National Institute of Standards and Technology; and Dr. Ursula Kattner, National Institute of Standards and Technology.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koneru, S.R., Kadirvel, K. & Wang, Y. High-Throughput Design of Multi-Principal Element Alloys with Spinodal Decomposition Assisted Microstructures. J. Phase Equilib. Diffus. 43, 753–763 (2022). https://doi.org/10.1007/s11669-022-00977-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-022-00977-2

Keywords

Navigation