Log in

On the Phase Configurational Entropy of Dual-Phase γ/γ′ Multi-principal Element Alloys: A Case Study on the Al–Cu–Fe–Ni–Ti System

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

Configurational entropy is an important indicator of the formability of single solid solutions in multi-principal element alloys, typically estimated by using nominal compositions. However, nearly half of reported alloys consist of multiple phases rather than a single solid solution, leading to the redistribution of components among the constituent phases. In the present work, we evaluated the configurational entropy of constituent phases and the phase fraction-weighted configurational entropy in dual-phase γ/γ′ multi-principal element alloys within the Al–Cu–Fe–Ni–Ti quinary system. Two alloys, with the highest configurational entropy in either γ or γ′ phase, respectively, were selected by employing the high-throughput CALPHAD method and fabricated. It was found that the configurational entropies of constituent γ and γ′ phases, as well as the phase fraction-weighted value being lower than that of the nominal composition. The thermodynamic constraint of phase equilibria determines the elemental partitioning of the components in the constituent phases for multi-phase high-entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  3. O. Senkov, J. Miller, D. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015). https://doi.org/10.1038/ncomms7529

    Article  CAS  PubMed  Google Scholar 

  4. M.-H. Tsai, J.-W. Yeh, Mater. Res. Lett. 2, 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  5. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  6. Y. Jien-Wei, Ann. Chim. Sci. Mater. 31, 633–648 (2006). https://doi.org/10.3166/acsm.31.633-648

    Article  Google Scholar 

  7. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  8. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, Sci. Rep. 4, 1–5 (2014). https://doi.org/10.1038/srep06200

    Article  CAS  Google Scholar 

  9. T.-K. Tsao, A.-C. Yeh, C.-M. Kuo, K. Kakehi, H. Murakami, J.-W. Yeh, S.-R. Jian, Sci. Rep. 7, 12658 (2017). https://doi.org/10.1038/s41598-017-13026-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y.-T. Chen, Y.-J. Chang, H. Murakami, S. Gorsse, A.-C. Yeh, Scripta Mater. 187, 177–182 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.002

    Article  CAS  Google Scholar 

  11. O.N. Senkov, D. Isheim, D.N. Seidman, A.L. Pilchak, Entropy 18, 102 (2016). https://doi.org/10.3390/e18030102

    Article  CAS  Google Scholar 

  12. D.B. Miracle, M.-H. Tsai, O.N. Senkov, V. Soni, R. Banerjee, Scripta Mater. 187, 445–452 (2020). https://doi.org/10.1016/j.scriptamat.2020.06.048

    Article  CAS  Google Scholar 

  13. S.-Y. Yen, H. Murakami, S.-K. Lin, J. Alloys Compd. 952, 170027 (2023). https://doi.org/10.1016/j.jallcom.2023.170027

    Article  CAS  Google Scholar 

  14. S. Gorsse, M. Nguyen, O.N. Senkov, D.B. Miracle, Data Brief 21, 2664–2678 (2018). https://doi.org/10.1016/j.dib.2018.11.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, Amsterdam, 1998)

    Google Scholar 

  16. B. Sundman, H. Lukas, S. Fries, Computational Thermodynamics: The Calphad Method (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  17. S. Yang, J. Lu, F. **ng, L. Zhang, Y. Zhong, Acta Mater. 192, 11–19 (2020). https://doi.org/10.1016/j.actamat.2020.03.039

    Article  CAS  Google Scholar 

  18. Y.-C. Liu, S.-Y. Yen, S.-H. Chu, S.-K. Lin, M.-H. Tsai, Mater. Today Commun. 26, 102096 (2021). https://doi.org/10.1016/j.mtcomm.2021.102096

    Article  CAS  Google Scholar 

  19. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, W. Oates, Calphad 33, 328–342 (2009)

    Article  CAS  Google Scholar 

  20. E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, C. Tassin, J.-J. Blandin, R. Dendievel, B. Vayre, S. Abed, Acta Mater. 142, 82–94 (2018). https://doi.org/10.1016/j.actamat.2017.09.047

    Article  CAS  Google Scholar 

  21. M. Wenderoth, R. Völkl, T. Yokokawa, Y. Yamabe-Mitarai, H. Harada, Scripta Mater. 54, 275–279 (2006). https://doi.org/10.1016/j.scriptamat.2005.09.017

    Article  CAS  Google Scholar 

  22. Y. Ro, Y. Koizumi, H. Harada, Mater. Sci. Eng. A 223, 59–63 (1997). https://doi.org/10.1016/S0921-5093(96)10504-9

    Article  Google Scholar 

  23. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater. 52, 3737–3744 (2004). https://doi.org/10.1016/j.actamat.2004.04.028

    Article  CAS  Google Scholar 

  24. D. Pope, S.S. Ezz, Int. Metals Rev. 29, 136–167 (1984). https://doi.org/10.1179/imtr.1984.29.1.136

    Article  CAS  Google Scholar 

  25. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic basis (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  26. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Science and Technology Council (NSTC) in Taiwan (Grant Nos. 112-2628-E-006-019, 112-2622-8-006-020, and 112-2923-E-006-004). This work was also partially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. The authors gratefully acknowledge to Ms. Mei-Lan Liang and Ms. Shih-Wen Tseng from Core Facility Center, National Cheng Kung University for DB-FIB and Cs-corrected TEM/STEM analyses.

Funding

Funding was provided by National Science and Technology Council (Grant Nos. 112-2628-E-006-019, 112-2622-8-006-020, 112-2923-E-006-004).

Author information

Authors and Affiliations

Authors

Contributions

Shao-yu Yen: methodology, software, validation, and writing—original draft. Hao-che Wang: software and investigation. Shih-kang Lin: conceptualization, resources, writing—review & editing, funding acquisition, and supervision.

Corresponding author

Correspondence to Shih-kang Lin.

Ethics declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, Sy., Wang, Hc. & Lin, Sk. On the Phase Configurational Entropy of Dual-Phase γ/γ′ Multi-principal Element Alloys: A Case Study on the Al–Cu–Fe–Ni–Ti System. High Entropy Alloys & Materials (2024). https://doi.org/10.1007/s44210-024-00037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44210-024-00037-z

Keywords

Navigation