Log in

Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Lowering the thermal energy and increasing the kinetic energy of hard metal particles sprayed by the newly developed HVAF systems can significantly reduce their decarburization, and increases the sliding wear and corrosion resistance of the resulting coatings, making the HVAF technique attractive, both economically and environmentally, over its HVOF predecessors. Two agglomerated and sintered feedstock powder chemistries, WC-Co (88/12) and WC-CoCr (86/10/4), respectively, with increasing primary carbides grain size from 0.2 to 4.0 microns, have been deposited by the latest HVAF-M3 process onto carbon steel substrates. Their dry sliding wear behaviors and friction coefficients were evaluated at room temperature via Ball-on-disk (ASTM G99-90) wear tests against Al2O3 counterparts, and via Pin-on-disk (ASTM G77-05) wear tests against modified martensitic steel counterparts in both dry and lubricated conditions. Sliding wear mechanisms, with the formation of wavy surface morphology and brittle cracking, are discussed regarding the distribution and size of primary carbides. Corrosion behaviors were evaluated via standard Neutral Salt Spray, Acetic Acid Salt Spray, accelerated corrosion test, and electrochemical polarization test at room temperature. The optimization of the tribological properties of the coatings is discussed, focusing on the suitable selection of primary carbide size for different working load applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Bielewski, Replacing Cadmium and Chromium, Research and Technology Organization and NATO, RTO-AG-AVT-140, 2011, Chp.23, pp. 1-22

  2. L.-M. Berger, P. Vuoristo, T. Mäntylä, W. Kunert, W. Lengauer, and P. Ettmayer, Practical Solutions to Engineering Problems, C.C. Berndt, Ed., ASM International, Materials Park, OH, 1996, p 97-106

    Google Scholar 

  3. G. Bolelli, R. Giovanardi, L. Lusvarghi, and T. Manfredini, Corrosion Resistance of HVOF-Sprayed Coatings for Hard Chrome Replacement, Corros. Sci., 2006, 48, p 3375-3397

    Article  Google Scholar 

  4. A. Wank, B. Wielage, H. Pokhmurska, E. Friesen, and G. Reisel, Comparison of Hardmetal and Hard Chromium Coatings Under Different Tribological Conditions, Surf. Coat. Technol., 2006, 201, p 1975-1980

    Article  Google Scholar 

  5. G. Bolelli, L.M. Berger, M. Bonetti, and L. Lusvarghi, Comparative Study of the Dry Sliding Wear Behaviour of HVOF-Sprayed WC-(W, Cr)2C-Ni and WC-CoCr Hardmetal Coatings, Wear, 2014, 309, p 96-111

    Article  Google Scholar 

  6. G. Bolelli, L.-M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-CoCr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144

    Article  Google Scholar 

  7. Q. Wang, S. Zhang, Y. Cheng, J. **ang, X. Zhao, and G. Yang, Wear and Corrosion Performances of WC-10Co4Cr Coatings Deposited by Different HVOF and HVAF Spraying Processes, Surf. Coat. Technol., 2013, 218, p 127-136

    Article  Google Scholar 

  8. M. Barletta, G. Bolelli, B. Bonferroni, and L. Lusvarghi, Wear and Corrosion Behaviour of HVOF-Sprayed WC-CoCr Coatings on Al Alloys, J. Therm. Spray Technol., 2010, 19(1-2), p 358-367

    Article  Google Scholar 

  9. ASTM G99-05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2010. www.astm.org

  10. ASTM G77-, Standard Test Method for Wear Testing with a Ball-on-Disk Apparatus, ASTM International

  11. S. Luyckx and A. Love, The Dependence of the Contiguity of WC on Co Content and Its Independence from WC Grain Size in WC-Co Alloys, Int. J. Refract. Metals Hard Mat., 2005, V24, p 75-79

    Google Scholar 

  12. C. Lyphout, J. Kitamura, K. Sato, J. Yamada, and S. Dizdar, Tungsten Carbide Deposition Processes for Hard Chrome Alternative: Preliminary Study of HVAF vs. HVOF Thermal Spray Processes, Proceedings ITSC 2013, Busan, South Korea, 2013

  13. C. Lyphout, S. Björklund, M. Karlsson, M. Runte, G. Reisel, and P. Boccaccio, Screening Design of Supersonic Air Fuel Processing for hard Metal Coatings, J. Therm. Spray Technol., 2014, 23(8), p 1323-1332

    Article  Google Scholar 

  14. C. Lyphout and K. Sato, Screening Design of Hard Metal Feedstock Powders for Supersonic Air Fuel Processing, Surf. Coat. Technol., 2014, 258(2014), p 447-457

    Article  Google Scholar 

  15. J.C.P. Zuñega, M.G. Gee, R.J.K. Wood, and J. Walker, Scratch Testing of WC/Co Hardmetals, Tribol. Int., 2012, 54, p 77-86

    Article  Google Scholar 

  16. G. Bolelli, A. Candeli, H. Koivuluoto, L. Lusvarghi, T. Manfredini, and P. Vuoristo, Microstructure-Based Thermo-Mechanical Modelling of Thermal Spray Coatings, J. Therm. Spray Technol., 2015, 73(15), p 20-34

    Google Scholar 

  17. W.A. Glaeser, Wear Debris Classification, Modern Tribology Handbook—Volume One—Macrotribology, B. Bhushan, F.E. Kennedy, and A.Z. Szeri, Ed., CRC Press, Boca Raton, Florida (USA), 2001, p 301-315

    Google Scholar 

  18. J.V. Gabrusenoks, P.D. Cikmach, A.R. Lusis, J.J. Kepleris, and G.M. Ramans, Electrochromic Colour Centres in Amorphous Tungsten Trioxide Thin Films, Solid State Ionics, 1984, 14, p 25-30

    Article  Google Scholar 

  19. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, and M. Figlarz, Infrared and Raman Study of WO3 Tungsten Trioxides and WO3 xH2O Tungsten Trioxide Hydrates, J. Solid State Chem., 1987, 67, p 235-247

    Article  Google Scholar 

  20. S. Usmani, S. Sampath, D.L. Houck, and D. Lee, Effect of Carbide Grain Size on the Sliding and Abrasive Wear Behavior of Thermally Sprayed WC-Co Coatings, Tribol. Trans., 1997, 40(3), p 470-478

    Article  Google Scholar 

  21. T. Sudaprasert, P.H. Shipway, and D.G. McCartney, Sliding Wear Behaviour of HVOF Sprayed WC-Co Coatings Deposited With Both Gas-Fuelled and Liquid-Fuelled Systems, Wear, 2003, 255, p 943-949

    Article  Google Scholar 

  22. Q. Yang, T. Senda, and A. Ohmori, Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF Sprayed WC-12% Co Coatings, Wear, 2003, 254(1-2), p 23-34

    Article  Google Scholar 

  23. Q. Yang, T. Senda, and A. Hirose, Sliding Wear Behavior of WC-12% Co Coatings at Elevated Temperatures, Surf. Coat. Technol., 2006, 200(14-15), p 4208-4212

    Article  Google Scholar 

  24. C. Verdon, A. Karimi, and J.-L. Martin, A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures, Mater. Sci. Eng. A, 1998, 246(1-2), p 11-24

    Article  Google Scholar 

  25. L.-M. Berger, R. Puschmann, J. Spatzier, and S. Matthews, Potential of HVAF Spray Process, Therm. Spray Bull., 2013, 6(1), p 16-20

    Google Scholar 

  26. G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 2nd ed., Butterworth-Heinemann, Woburn, MA, 2001, p 483-531

    Google Scholar 

  27. I. Konyashin, Cemented Carbides for Mining, Construction and Wear Parts, Comprehensive Hard Materials—Volume I: Hardmetals, V.K. Sarin, D. Mari, L. Llanes, and C.E. Nebel, Ed., Elsevier, Amsterdam, The Netherlands, 2014, p 425-451

    Chapter  Google Scholar 

  28. G.W. Stachowiak and A.W. Batchelor, Engineering Tribology, 2nd ed., Butterworth-Heinemann, Woburn, MA, USA, 2001, p 560-569

    Google Scholar 

  29. J.R. Davis, Ed., ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International, Materials Park, OH, USA, 2000, p 382-383

    Google Scholar 

  30. A.S. Kurlov and A.I. Gusev, Tungsten Carbides—Structure, Properties and Application in Hardmetals, Springer Series in Materials Science, Vol 184, R. Hull, C. Jagadish, R.M. Osgood, J. Parisi, and Z.M. Wang, Ed., Springer, Cham, 2013, p 34-36

    Google Scholar 

  31. A.M. Human and H.E. Exner, The Relationship Between Electrochemical Behaviour and In-service Corrosion of WC Based Cemented Carbides, Int. J. Refract. Met. Hard Mater., 1997, 15, p 65-71

    Article  Google Scholar 

  32. A.M. Human and H.E. Exner, Electrochemical Behaviour of Tungsten-Carbide Hardmetals, Mater. Sci. Eng. A, 1996, 209, p 180-191

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge SP Institute (Borås, Sweden) for NSS and AASS corrosion investigations, and Carolina Pettersson at SWEREA IVF (Mölndal, Sweden) for her contribution to SEM analysis at high magnification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lyphout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyphout, C., Sato, K., Houdkova, S. et al. Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process. J Therm Spray Tech 25, 331–345 (2016). https://doi.org/10.1007/s11666-015-0285-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0285-4

Keywords

Navigation