Log in

Multi-stage Single-Point Incremental Forming: An Experimental Investigation of Surface Roughness and Forming Time

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper describes an experimental investigation of surface roughness and forming time of parts formed by multi-stage single-point incremental forming (MSPIF). Process parameters, namely tool size, feed rate, step depth, sheet thickness, and spindle speed, are considered in the present study. Experiments are designed using the central composite design (CCD) method. Analysis of variance (ANOVA) is used to identify significance of process parameters for surface roughness and forming time. It is found that tool size is the most significant process parameter followed by step depth, spindle speed and sheet thickness for influencing surface roughness. Surface roughness initially decreases and then increases with increase in tool size. It decreases with decrease in step depth, spindle speed and sheet thickness. For forming time, step depth and feed rate are found significant. Forming time decreases with increase in step depth and feed rate. Regression models of surface roughness and forming time are also developed. Further, process parameters are optimized to minimize surface roughness and forming time of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Golovashchenko and A. Krause, Improvement of Formability of 6xxx Aluminum Alloys Using Incremental Forming Technology, J. Mater. Eng. Perform, 2005, 14(4), p 503–507. https://doi.org/10.1361/105994905X56133

    Article  CAS  Google Scholar 

  2. P. Shrivastava and P. Tandon, Effect of Preheated Microstructure vis-à-vis Process Parameters and Characterization of Orange Peel in Incremental Forming of AA1050 Sheets, J. Mater. Eng. Perform, 2019, 28(5), p 2530–2542. https://doi.org/10.1007/s11665-019-04032-z

    Article  CAS  Google Scholar 

  3. J.R. Duflou, J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, and A.M. Habraken, Process Window Enhancement for Single Point Incremental Forming Through Multi-Step Toolpaths, CIRP Ann., 2008, 57(1), p 253–256. https://doi.org/10.1016/j.cirp.2008.03.030

    Article  Google Scholar 

  4. T.J. Kim and D.Y. Yang, Improvement of Formability for the Incremental Sheet Metal Forming Process, Int. J. Mech. Sci., 2000, 42(7), p 1271–1286. https://doi.org/10.1016/S0020-7403(99)00047-8

    Article  Google Scholar 

  5. Z. Liu, W.J. Daniel, Y. Li, S. Liu, and P.A. Meehan, Multi-Pass Deformation Design for Incremental Sheet Forming: Analytical Modeling, Finite Element Analysis and Experimental Validation, J. Mater. Process. Technol., 2014, 214(3), p 620–634. https://doi.org/10.1016/j.jmatprotec.2013.11.010

    Article  Google Scholar 

  6. J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, and J. Allwood, Asymmetric Single Point Incremental Forming of Sheet Metal, CIRP Ann., 2005, 54(2), p 88–114. https://doi.org/10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  7. G. Ambrogio, L. De Napoli, L. Filice, F. Gagliardi, and M. Muzzupappa, Application of Incremental Forming Process for High Customised Medical Product Manufacturing, J. Mater. Process. Technol., 2005, 162, p 156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    Article  Google Scholar 

  8. M. Bambach, B. Taleb Araghi, and G. Hirt, Strategies to Improve the Geometric Accuracy in Asymmetric Single Point Incremental Forming, Prod. Eng., 2009, 3(2), p 145–56.

    Article  Google Scholar 

  9. Z. Cui and L. Gao, Studies on Hole-Flanging Process Using Multistage Incremental Forming, CIRP. J. Manuf. Sci. Technol., 2010, 2(2), p 124–128. https://doi.org/10.1016/j.cirpj.2010.02.001

    Article  Google Scholar 

  10. L. Junchao, S. Junjian, and W. Bin, A Multipass Incremental Sheet Forming Strategy of a Car Taillight Bracket, Int. J. Adv. Manuf, 2013, 69(9), p 2229–2236. https://doi.org/10.1007/s00170-013-5179-3

    Article  Google Scholar 

  11. J. Li, P. Geng and J. Shen, Numerical Simulation and Experimental Investigation of Multistage Incremental Sheet Forming, Int J Adv Manuf Technol, 2013, 68, p 2637–2644.

    Article  Google Scholar 

  12. N. Moser, E. Ndip-Agbor, H.Q. Ren, Z.X. Zhang, K. Ehmann, and J. Cao, Challenges and Process Strategies Concerning Multi-Pass Double Sided Incremental Forming, Key Eng. Mater., 2015, 651, p 1122–1127. https://doi.org/10.4028/www.scientific.net/KEM.651-653.1122

    Article  Google Scholar 

  13. J. Verbert, B. Belkassem, C. Henrard, A.M. Habraken, J. Gu, H. Sol, B. Lauwers, and J.R. Duflou, Multi-Step Toolpath Approach to Overcome Forming Limitations in Single Point Incremental Forming, Int. J. Mater. Form., 2008, 1, p 1203–1206. https://doi.org/10.1007/s12289-008-0157-2

    Article  Google Scholar 

  14. R. Malhotra, A. Bhattacharya, A. Kumar, N.V. Reddy, and J. Cao, A New Methodology for Multi-Pass Single Point Incremental Forming with Mixed Toolpaths, CIRP Ann., 2011, 60(1), p 323–326. https://doi.org/10.1016/j.cirp.2011.03.145

    Article  Google Scholar 

  15. L. Manco, L. Filice, and G. Ambrogio, Analysis of the Thickness Distribution Varying Tool Trajectory in Single-Point Incremental Forming, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., 2011, 225 (3), p 348–56.

    Article  Google Scholar 

  16. J. Li, J. Hu, J. Pan, and P. Geng, Thickness Distribution and Design of a Multi-Stage Process for Sheet Metal Incremental Forming, Int. J. Adv. Manuf. Technol., 2012, 2(9), p 981–988. https://doi.org/10.1007/s00170-011-3852-y

    Article  Google Scholar 

  17. Z. Liu, Y. Li, and P.A. Meehan, Tool Path Strategies and Deformation Analysis In Multi-Pass Incremental Sheet Forming Process, Int. J. Adv. Manuf. Technol., 2014, 5(1), p 395–409. https://doi.org/10.1007/s00170-014-6143-6

    Article  Google Scholar 

  18. X. Shi, G. Hussain, G. Zha, M. Wu, and F. Kong, Study on Formability of Vertical Parts Formed by Multi-Stage Incremental Forming, Int. J. Adv. Manuf. Technol., 2014, 75(5), p 1049–1053. https://doi.org/10.1007/s00170-014-6192-x

    Article  Google Scholar 

  19. Z. Li, S. Lu, T. Zhang, Z. Mao, and C. Zhang, Analysis of Geometrical Accuracy Based on Multistage Single Point Incremental Forming of a Straight Wall Box Part, Int. J. Adv. Manuf. Technol., 2017, 93(5), p 2783–2789. https://doi.org/10.1007/s00170-017-0723-1

    Article  Google Scholar 

  20. S. Wu, Y. Ma, L. Gao, Y. Zhao, S. Rashed, and N. Ma, A Novel Multi-Step Strategy Of Single Point Incremental Forming for High Wall Angle Shape, J. Manuf. Process., 2020, 56, p 697–706. https://doi.org/10.1016/j.jmapro.2020.05.009

    Article  Google Scholar 

  21. H.K. Nirala, P.K. Jain, J.J. Roy, M.K. Samal, and P. Tondon, An Approach to Eliminate Stepped Features in Multistage Incremental Sheet Forming Process: Experimental and FEA Analysis, J. Mech. Sci. Technol, 2017, 31(2), p 599–604. https://doi.org/10.1007/s12206-017-0112-6

    Article  Google Scholar 

  22. M. Shamsari, M.J. Mirnia, M. Elyasi, and H. Baseri, Formability Improvement in Single Point Incremental Forming of Truncated Cone Using a Two-Stage Hybrid Deformation Strategy, Int. J. Adv. Manuf, 2018, 94(5), p 2357–2368. https://doi.org/10.1007/s00170-017-1031-5

    Article  Google Scholar 

  23. P. Dai, Z. Chang, M. Li, and J. Chen, Reduction of Geometric Deviation by Multi-Pass Incremental Forming Combined with Tool Path Compensation for Non-Axisymmetric Aluminum Alloy Component with Stepped Feature, Int. J. Adv. Manuf, 2019, 102(1), p 809–817. https://doi.org/10.1007/s00170-018-3194-0

    Article  Google Scholar 

  24. E. Ndip-Agbor, P. Cheng, N. Moser, K. Ehmann, and J. Cao, Prediction of Rigid Body Motion in Multi-Pass Single Point Incremental Forming, J. Mater. Process. Technol., 2019, 269, p 117–127. https://doi.org/10.1016/j.jmatprotec.2019.02.007

    Article  Google Scholar 

  25. M. Skjoedt, M.B. Silva, P.A. Martins, and N. Bay, Strategies and Limits in Multi-Stage Single-Point Incremental Forming, J. Strain Anal. Eng. Des., 2010, 45(1), p 33–44.

    Article  Google Scholar 

  26. S. Gajjar, V. Sisodia, R. Jagtap, K. More, and S. Kumar Experimental investigation on geometric accuracy and surface roughness of formed part in multistage single point incremental forming (spif) process, In Innovative Design, 2021. https://doi.org/10.1007/978-981-15-6619-6_22

  27. H. Lu, H. Liu, and C. Wang, Review on Strategies for Geometric Accuracy Improvement in Incremental Sheet Forming, Int. J. Adv. Manuf, 2019, 102(9), p 3381–3417. https://doi.org/10.1007/s00170-019-03348-3

    Article  Google Scholar 

  28. I. Cerro, E. Maidagan, J. Arana, A. Rivero, and P.P. Rodriguez, Theoretical and Experimental Analysis of the Dieless Incremental Sheet Forming Process, J. Mater. Process. Technol., 2006, 177(1–3), p 404–408.

    Article  CAS  Google Scholar 

  29. O.U. Lasunon, Surface Roughness in Incremental Sheet Metal Forming of AA5052, Adv. Mater. Res., 2013, 753, p 203–206.

    Article  Google Scholar 

  30. C. Raju and C.S. Narayanan, Application of a Hybrid Optimization Technique in a Multiple Sheet Single Point Incremental Forming Process, Measurement, 2016, 78, p 296–308.

    Article  Google Scholar 

  31. A. Mulay, S. Ben, S. Ismail, and A. Kocanda, Experimental Investigations into the Effects of SPIF Forming Conditions on Surface Roughness and Formability by Design of Experiments, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(10), p 3997–4010. https://doi.org/10.1007/s40430-016-0703-7

    Article  Google Scholar 

  32. H.R. Dodiya, D.A. Patel, A.B. Pandey, D.D. Patel, and S. Saladi, Experimental Investigation of Surface Roughness for AA3003-0 Aluminium Alloy Using Single Point Incremental Forming, Mater. Today: Proc, 2021, 46, p 8655–8662.

    CAS  Google Scholar 

  33. S. Zhang, G.H. Tang, Z. Li, X. Jiang, and K. Li, Experimental Investigation on the Spring Back of AZ31B Mg Alloys in Warm Incremental Sheet Forming Assisted with oil Bath Heating, Int. J. Adv. Manuf, 2020, 109(1), p 535–551.

    Article  Google Scholar 

  34. J. Antony, Design of Experiments for Engineers and Scientists, Elsevier, New York, 2014.

    Google Scholar 

  35. H.B. Lu, Y.L. Li, Z.B. Liu, S. Liu, and P.A. Meehan, Study on Step Depth for Part Accuracy Improvement in Incremental Sheet Forming Process, J. Adv. Mater. Res., 2014, 939, p 274–280.

    Article  Google Scholar 

  36. P. Gupta and J. Jeswiet, Effect of Temperatures During Forming In Single Point Incremental Forming, Int. J. Adv. Manuf., 2018, 95(9), p 3693–3706.

    Article  Google Scholar 

  37. Z. Chang and J. Chen, Analytical Model and Experimental Validation of Surface Roughness for Incremental Sheet Metal Forming Parts, Int. J. Mach. Tools Manuf., 2019, 146, p 103453.

    Article  Google Scholar 

  38. G. Palumbo and M. Brandizzi, Experimental Investigations on the Single Point Incremental Forming of a Titanium Alloy Component Combining Static Heating with High Tool Rotation Speed, Mater. Des, 2012, 40, p 43–51.

    Article  CAS  Google Scholar 

  39. AI Khuri 2006 Response surface methodology and related topics, World scientific

  40. W.A. Jensen, Confirmation Runs in Design of Experiments, J. Qual. Technol., 2016, 48, p 162–177. https://doi.org/10.1080/00224065.2016.11918157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bari, N., Kumar, S. Multi-stage Single-Point Incremental Forming: An Experimental Investigation of Surface Roughness and Forming Time. J. of Materi Eng and Perform 32, 1369–1381 (2023). https://doi.org/10.1007/s11665-022-07183-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07183-8

Keywords

Navigation