Log in

Effect of Shot Peening on the Ballistic Performance of Friction Stir Welded Magnesium Alloy (AZ31B) Joints

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of shot peening (SP) on the ballistic performance of base metal (BM) and friction stir welded (FSWed) AZ31B magnesium alloy joints has been investigated. The defect-free welded joints of AZ31B magnesium alloy were prepared by using the optimum weld parameters, and the joints were shot peened by using steel balls of 2 mm in diameter. In order to investigate the effect of SP on the microstructure, SEM analyses were done at several regions of the top and bottom surfaces of the BM and stir zone (SZ) regions of the FSWed joints. Improved microhardness values of 75 and 70 HV were observed at the top surface of SP-treated BM and SZ regions. The effect of SP on the ballistic performance of AZ31B magnesium alloy joints was determined by conducting high velocity ballistic experiments. Steel core projectiles of 7.62 mm in diameter were used to impact the welded joints. Aluminium alloy AA6062 plates of 25 mm thickness were used as a back plate along with the target. The depth of penetration of the projectile into the target and the back plate was measured to determine the ballistic performance. Among the various regions tested, the SP-treated BM target offered improved ballistic performance compared to the SZ of the SP target. Post investigation of the projectile penetrated regions of the SP targets indicated the absence of voids and micro-cracks compared to non-treated targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.G. Couch, The Science of Armour Materials, Elsevier Science & Technology, 2016, p 1–751.

  2. A. Luo and A. Sachdev, Microstructure and Mechanical Properties of Magnesium-Aluminum-Manganese Cast Alloys, Inter. J. Metalcasting, 2010, 4(4), p 51–59.

    Article  CAS  Google Scholar 

  3. T.L Jones, R.D. DeLorme, M.S. Burkins, and W.A. Gooch, Ballistic Evaluation of Magnesium Alloys AZ31B, Army Research Lab Aberdeen Proving Ground MD, 2007, p 1–14.

  4. T.L. Jones and R.D. DeLorme, Development of a Ballistic Specification for Magnesium Alloy AZ31B, Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate, 2008, p 1–44.

  5. Y. Sano, K. Masaki, T. Gushi, and T. Sano, Improvement in Fatigue Performance of Friction Stir Welded A6061–T6 Aluminum Alloy by Laser Peening Without Coating, Mater. Des., 2012, 1980–2015(36), p 809–814.

    Article  Google Scholar 

  6. V. Patel, W. Li, A. Vairis, and V. Badheka, Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement, Crit. Rev. Sol. State Mater. Sci., 2019, 44(5), p 378–426.

    Article  CAS  Google Scholar 

  7. D. Ahmadkhaniha, A. Järvenpää, M. Jaskari, M. Heydarzadeh Sohi, A. Zarei-Hanzaki, M. Fedel, F. Deflorian, and L.P. Karjalainen, Microstructural Modification of Pure Mg for Improving Mechanical and Biocorrosion Properties, J. Mech. Behav. Biomed. Mater., 2016, 61, p 360–370. https://doi.org/10.1016/j.jmbbm.2016.04.015

    Article  CAS  Google Scholar 

  8. W. Wen, W. Kuaishe, G. Qiang, and W. Nan, Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Cast AZ31 Magnesium Alloy, Rare Metal Mater. Eng., 2012, 41(9), p 1522–1526.

    Article  Google Scholar 

  9. P.L. Wenya Li, S.R.Y. Niu, Q. Vivek Patel, and Wen, Improving Microstructural and Tensile Properties of AZ31B Magnesium Alloy Joints by Stationary Shoulder Friction Stir Welding, J. Manuf. Process., 2019, 37, p 159–167. https://doi.org/10.1016/j.jmapro.2018.11.014

    Article  Google Scholar 

  10. V. Patel, W. Li, and X. Yaxin, Stationary Shoulder Tool in Friction Stir Processing: A Novel Low Heat Input Tooling System for Magnesium Alloy, Mater. Manuf. Process., 2019, 34(2), p 177–182.

    Article  CAS  Google Scholar 

  11. S. Dharani Kumar and S. Suresh Kumar, Experimental Ballistic Performance Determination of Friction Stir Welded Magnesium (AZ31B) Targets, Mech. Based Des. Struct. Mach., 2022, 50(6), p 1851–1871.

    Article  Google Scholar 

  12. S.D. Kumar and S.S. Kumar, Numerical and Experimental Ballistic Performance of Welded Magnesium (AZ31B) Plates, Emerg. Mater. Res., 2020, 9(4), p 1217–1228. https://doi.org/10.1680/jemmr.19.00159

    Article  Google Scholar 

  13. W.U. Shu-xu, W. Shou-ren, W. Gao-qi, Y.U. **u-chun, L.I.U. Wen-tao, C. Zheng-qi, and W. Dao-sheng, Microstructure, Mechanical and Corrosion Properties of Magnesium Alloy Bone Plate Treated by High-Energy Shot Peening, Trans. Nonferrous Metal. Soc. Chin., 2019, 29(8), p 1641–1652. https://doi.org/10.1016/S1003-6326(19)65071-5

    Article  Google Scholar 

  14. M.B. Toparli, Effect of Shot Peening on Ballistic Limit of Al6061-T651 Aluminium Alloy Plates, Exp. Tech., 2020, 44(1), p 37–47.

    Article  Google Scholar 

  15. C. Liu, H. Zheng, G. **n, B. Jiang, and J. Liang, Effect of Severe Shot Peening on Corrosion Behavior of AZ31 and AZ91 Magnesium Alloys, J. Alloy. Compd., 2019, 770, p 500–506.

    Article  CAS  Google Scholar 

  16. J. Zhang, O. **ngbin, D. Yang, and Z. Sun, Surface Nanocrystallization of Magnesium Alloy AZ91D by High-Energy Shot Peening, J. Wuhan Univ. Tech. Mater. Sci. Ed, 2009, 24(4), p 515–519. https://doi.org/10.1007/s11595-009-4515-9

    Article  CAS  Google Scholar 

  17. S. Bagherifard, D.J. Hickey, S. Fintová, F. Pastorek, I. Fernandez-Pariente, M. Bandini, T.J. Webster, and M. Guagliano, Effects of Nanofeatures Induced by Severe Shot Peening (SSP) on Mechanical, Corrosion and Cytocompatibility Properties of Magnesium Alloy AZ31, Act. Biomater., 2018, 66, p 93–108.

    Article  CAS  Google Scholar 

  18. J. Zhang, Y. Jian, X. Zhao, D. Meng, F. Pan, and Q. Han, The Tribological Behavior of a Surface-Nanocrystallized Magnesium Alloy AZ31 Sheet After Ultrasonic Shot Peening Treatment, J. Magnes. Alloy., 2021, 9(4), p 1187–1200.

    Article  CAS  Google Scholar 

  19. S.-x Wu, S.-r Wang, G.-q Wang, Y. **u-chun, W.-t Liu, Z.-q Chang, and D.-s Wen, Microstructure, Mechanical and Corrosion Properties of Magnesium Alloy Bone Plate Treated by High-Energy Shot Peening, Trans. Nonferrous Metal. Soc. Chin., 2019, 29(8), p 1641–1652.

    Article  CAS  Google Scholar 

  20. H.-T. Wang, H.-L. Yao, M.-X. Zhang, X.-B. Bai, Z.-H. Yi, Q.-Y. Chen, and G.-C. Ji, Surface Nanocrystallization Treatment of AZ91D Magnesium Alloy by Cold Spraying Shot Peening Process, Surf. Coat. Technol., 2019, 374, p 485–492.

    Article  CAS  Google Scholar 

  21. L.B. Peral, A. Zafra, S. Bagherifard, M. Guagliano, and I. Fernández-Pariente, Effect of Warm Shot Peening Treatments on Surface Properties and Corrosion Behavior of AZ31 Magnesium Alloy, Surf. Coat. Technol., 2020, 401, p 126285. https://doi.org/10.1016/j.surfcoat.2020.126285

    Article  CAS  Google Scholar 

  22. S. Dharani Kumar, U. Magarajan, S.S. Kumar, and S. Balasubramani, Effect of Shot Peening on Mechanical Properties and Ballistic Resistance of Magnesium Alloy AZ31B, Metal Sci. Heat Treat., 2021, 63(3–4), p 197–202. https://doi.org/10.1007/s11041-021-00670-0

    Article  CAS  Google Scholar 

  23. O. Hatamleh, S. Forth, and A.P. Reynolds, Fatigue Crack Growth of Peened Friction Stir-Welded 7075 Aluminum Alloy Under Different Load Ratios, J. Mater. Eng. Perform., 2010, 19(1), p 99–106.

    Article  CAS  Google Scholar 

  24. P. Liu, Hu. Jiaying, S. Sun, X. Shubo, and G. Ren, Effect of Laser Shock Peening on the Microstructural Characterization In Weld Nugget Zone of Friction Stir Welded 7050 Aluminum Alloys, J. Laser Appl., 2018, 30(3), p 032015. https://doi.org/10.2351/1.5035483

    Article  CAS  Google Scholar 

  25. M.A. Abdulstaar, K.J. Al-Fadhalah, and L. Wagner, Microstructural Variation Through Weld Thickness and Mechanical Properties of Peened Friction Stir Welded 6061 Aluminum Alloy Joints, Mater. Charact., 2017, 126, p 64–73.

    Article  CAS  Google Scholar 

  26. K. Masaki, K. Yamashiro, Y. Kobayashi, and T. Tuji, Effect of Shot Peening with Fine Zirconia Shot on Fatigue Property of Friction Stir Welded A6061 Alloy, ZairSoc Mater Sci. Japan, 2014, 63(8), p 596–601.

    Article  CAS  Google Scholar 

  27. M.M.Z. Ahmed, S. Ataya, M.MEl.-S. Seleman, T. Allam, N.A. Alsaleh, and E. Ahmed, Grain Structure, Crystallographic Texture, and Hardening Behavior of Dissimilar Friction Stir Welded AA5083-O and AA5754-H14, Metals, 2021, 11(2), p 181. https://doi.org/10.3390/met11020181

    Article  CAS  Google Scholar 

  28. O. Hatamleh, The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075–T7351 Aluminum, J. Mater. Eng. Perform., 2008, 17(5), p 688–694.

    Article  CAS  Google Scholar 

  29. V. Patel, W. Li, Y.S. Quan Wen, and N. Li, Stationary Shoulder Friction Stir Processing: A Low Heat Input Grain Refinement Technique for Magnesium Alloy, Friction Stir Welding and Processing X. Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, D. Yan Ed., Springer International Publishing, Cham, 2019, p 209–215. https://doi.org/10.1007/978-3-030-05752-7_20

    Chapter  Google Scholar 

  30. Vi. Patel, W. Li, and Q. Wen, Surface Analysis of Stationary Shoulder Friction Stir Processed AZ31B Magnesium Alloy, Mater. Sci. Technol., 2019, 35(5), p 628–631.

    Article  CAS  Google Scholar 

  31. V. Patel, W. Li, X. Liu, Y.S. Quan Wen, J. Shen, and F. Banglong, Tailoring Grain Refinement Through Thickness in Magnesium Alloy via Stationary Shoulder Friction Stir Processing and Copper Backing Plate, Mater. Sci. Eng. A, 2020, 784, p 139322.

    Article  CAS  Google Scholar 

  32. R.C. Zeng, W. Dietzel, R. Zettler, C.H.E.N. Jun, and K.U. Kainer, Microstructure Evolution and Tensile Properties of Friction-Stir-Welded AM50 Magnesium Alloy, Trans. Nonferrous Metal. Soc. Chin., 2008, 18, p s76–s80.

    Article  CAS  Google Scholar 

  33. S. Richmire, P. Sharifi, and M. Haghshenas, On Microstructure, Hardness, and Fatigue Properties of Friction Stir-Welded AM60 Cast Magnesium Alloy, Inter. J. Adv. Manuf. Technol., 2018, 98(5), p 2157–2172.

    Article  Google Scholar 

  34. B. Hassani, R. Vallant, F. Karimzadeh, M.H. Enayati, S. Sabooni, and K. Pradeep, Effect of Friction Stir Processing on Corrosion Behavior of Cast AZ91C Magnesium Alloy, Surf. Rev. Lett., 2019, 26(06), p 1850213.

    Article  CAS  Google Scholar 

  35. U. Magarajan and S. Suresh Kumar, Experimental Ballistic Performance of Friction Stir Processed Aluminum (AA6061-B4C) Surface Composite, Mech. Based Des. Struct. Mach., 2021 https://doi.org/10.1080/15397734.2021.1913419

    Article  Google Scholar 

  36. U. Magarajan and S. Suresh Kumar, Effect of Ceramic Particles Reinforcement on the Ballistic Resistance of Friction Stir Processed Thick AA6061 Surface Composite Targets, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2020, 235(15), p 2782–2794. https://doi.org/10.1177/0954406220954465

    Article  CAS  Google Scholar 

  37. P.K. Jena et al., Influence of Heat Treatment on the Ballistic Behavior of AA-7017 Alloy Plate Against 7.62 Deformable Projectiles, Proced. Eng., 2017, 173, p 214–221.

    Article  Google Scholar 

  38. P.K. Jena et al., Effect of Heat Treatment on Mechanical and Ballistic Properties of High Strength Armour Steel, Inter. J. impact Eng., 2010, 37(3), p 242–249.

    Article  Google Scholar 

  39. M.B. Karamis, F. Nair, and A. Tasdemirci, Analyses of Metallurgical Behavior of Al-SiCp Composites After Ballistic Impacts, Compos. Struct., 2004, 64(2), p 219–226. https://doi.org/10.1016/j.compstruct.2003.08.005

    Article  Google Scholar 

  40. M.B. Karamis, A. Tasdemirci, and F.E.H.M. Nair, Failure and Tribological Behaviour of the AA5083 and AA6063 Composites Reinforced by SiC Particles Under Ballistic Impact, Compos. Part A Appl. Sci. Manuf., 2003, 34(3), p 217–226.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Forensic Science University, Gujarat for their support for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dharani Kumar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharani Kumar, S., Suresh Kumar, S. Effect of Shot Peening on the Ballistic Performance of Friction Stir Welded Magnesium Alloy (AZ31B) Joints. J. of Materi Eng and Perform 31, 10294–10303 (2022). https://doi.org/10.1007/s11665-022-06992-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06992-1

Keywords

Navigation