Log in

Effect of Equiatomic Ti/Zr Substitution on the Shape Memory Effect of Biomedical Ti-Zr-Mn-Mo Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to develop biomedical shape memory alloys with high biocompatibility, novel (Ti-xZr)-2Mn-2Mo (TZMM) alloys were designed, and their microstructure, shape memory effect and martensitic transformation behavior were investigated. In this study, Ti/Zr atomic ratio of the TZMM alloys was varied between 1, 2 and 5. The experimental results revealed that the TZMM alloys were all composed of single β phase before plastic deformation. A certain amount of stress-induced α″ phase appeared after 2% strain loading. Primary β twin-bands and secondary stress-induced martensite (SIM) α″ twins were activated simultaneously in the β matrix of the TZMM alloys. (TZ)5:1MM alloy with a favorable {001}β<110>β recrystallization texture showed relatively optimal shape memory effect within the TZMM alloys, with a recoverable strain of 2.9%. The increase of Zr content in the alloy increased the β phase stability of metastable TZMM alloys, thereby requiring for higher stress to induce the martensitic transformation and ultimately impairing the shape memory effect of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these finds cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. G.F. Andreasen and T.B. Hilleman, An Evaluation of 55 Cobalt Substituted Nitinol Wire for use in Orthodontics, J. Am. Dent. Assoc., 1971, 82, p 1373–1375.

    CAS  Google Scholar 

  2. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Design, 2014, 56, p 1078–1113.

    CAS  Google Scholar 

  3. N.B. Morgan, Medical Shape Memory Alloy Applications-The Market and its Products, Mater. Sci. Eng. A, 2004, 378, p 16–23.

    Google Scholar 

  4. M. Pocek, F. Maspes, S. Masala, E. Squillaci, and G. Simonetti, Palliative Treatment of Neoplastic Strictures by Self-Expanding Nitinol Strecker Stent, Eur. Radiol., 1996, 6, p 230–235.

    CAS  Google Scholar 

  5. A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta. Biomater., 2012, 8, p 1661–1669.

    CAS  Google Scholar 

  6. D. Beyersmann and A. Hartwig, Carcinogenic Metal Compounds: Recent Insight into Molecular and Cellular Mechanisms, Arch. Toxicol., 2008, 82, p 493–512.

    CAS  Google Scholar 

  7. H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Texture and Shape Memory Behavior of Ti-22Nb-6Ta Alloy, Acta Mater., 2006, 54, p 423–433.

    CAS  Google Scholar 

  8. Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, and S. Miyazaki, Shape Memory Properties of Ti-Nb-Mo Biomedical Alloys, Acta. Mater., 2010, 58, p 4212–4223.

    CAS  Google Scholar 

  9. T. Maeshima, S. Ushimaru, K. Yamauchi, and M. Nishida, Effect of Heat Treatment on Shape Memory Effect and Superelasticity in Ti-Mo-Sn Alloys, Mater. Sci. Eng. A, 2006, 25, p 844–847.

    Google Scholar 

  10. H.Y. Kim, S. Hashimoto, J.I. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys, Mater. Sci. Eng. A, 2006, 25, p 438–440.

    Google Scholar 

  11. Y. Cui and L.K.H.B. YanLuoXu, Microstructure and Shape Memory Effect of Ti-20Zr-10Nb Alloy, Mater. Sci. Eng. A, 2010, 527, p 652–656.

    Google Scholar 

  12. W. Qu, X. Sun, B. Yuan, C. **ong, Y. Li, and Y. Nie, Phase Transformation and Microstructure Evolution of the Deformed Ti-30Zr-5Nb Shape Memory Alloy, Mater. Charact., 2017, 126, p 81–85.

    CAS  Google Scholar 

  13. Y. Li, Y. Cui, F. Zhang, and H. Xu, Shape Memory Behavior in Ti-Zr Alloys, Scripta. Mater., 2011, 64, p 584–587.

    CAS  Google Scholar 

  14. J. Wang, Q. Li, C. **ong, L. Yan, and B. Sun, Effect of Zr on the Martensitic Transformation and the Shape Memory Effect in Ti-Zr-Nb-Ta High-Temperature Shape Memory Alloys, J. Alloy Compd., 2017, 737, p 672–677.

    Google Scholar 

  15. Q. Li, X. Ma, C. **ong, W. Qu, and Y. Li, Effects of Annealing Temperature on Microstructures and Shape Memory Effect of Ti-19Zr-11Nb-2Ta Alloy Sheets, J. Alloy Compd., 2021, 897, p 162728.

    Google Scholar 

  16. J. Zhang, S. Fan, Y. Hao, N. Gozdecki, E. Lebrun, P. Vermaut, R. Portier, T. Gloriant, P. Laheurte, and F. Prima, Influence of Equiatomic Zr/Nb Substitution on Superelastic Behavior of Ti-Nb-Zr Alloy, Mater. Sci. Eng. A, 2013, 563, p 78–85.

    CAS  Google Scholar 

  17. S. Li and T.H. Nam, Superelasticity and Tensile Strength of Ti-Zr-Nb-Sn Alloys with High Zr Content for Biomedical Applications, Intermetallics, 2019, 112, 106545.

    CAS  Google Scholar 

  18. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys, Acta. Mater., 2006, 54, p 2419–2429.

    CAS  Google Scholar 

  19. P. Xue, Y. Li, F. Zhang, and C. Zhou, Shape Memory Effect and Phase Transformations of Ti-19.5Zr-10Nb-0.5Fe Alloy, Scripta. Mater., 2015, 101, p 99–102.

    CAS  Google Scholar 

  20. S. Li, I.U. Rehman, J.H. Lim, W.T. Lee, J.B. Seol, J.G. Kim, and T.H. Nam, Effect of Sn Content on Microstructure, Texture Evolution, Transformation Behavior and Superelastic Properties of Ti–20Zr–9Nb–(2–5)Sn (at.%) Shape Memory Alloys, Mater. Sci. Eng. A, 2021, 827, p 141994.

    CAS  Google Scholar 

  21. H.Y. Kim, J. Fu, H. Tobe, J. Kim, and S. Miyazaki, Crystal Structure, Transformation Strain, and Superelastic Property of Ti-Nb-Zr and Ti-Nb-Ta Alloys, Shap. Mem. Superelasticity, 2015, 1, p 107–116.

    Google Scholar 

  22. A. Konopatsky, V. Sheremetyev, S. Dubinskiy, Y. Zhukova, K. Firestein and D. Golberg, Structure and Superelasticity of Novel Zr-Rich Ti-Zr-Nb Shape Memory Alloys, Shap. Mem. Superelasticity, 2021, 7(2), p 304–313.

    Google Scholar 

  23. A. Kudryashova, V. Sheremetyev, K. Lukashevich, V. Cheverikin, and V. Brailovski, Effect of a Combined Thermomechanical Treatment on the Microstructure, Texture and Superelastic Properties of Ti-18Zr-14Nb Alloy for Orthopedic Implants, J. Alloy Compd., 2020, 843, p 156066.

    CAS  Google Scholar 

  24. G.N. Dayananda and M.S. Rao, Effect of Strain rate on Properties of Superelastic Niti Thin Wires, Mater. Sci. Eng. A, 2008, 486, p 96–103.

    Google Scholar 

  25. S. Li, Y.W. Kim, M.S. Choi, and T.H. Nam, Achieving High Porosity and Large Recovery Strain in Ni-Free High Zr-Containing Ti-Zr-Based Shape Memory Alloy Scaffolds by Fiber Metallurgy, Intermetallics, 2021, 128, 107015.

    CAS  Google Scholar 

  26. J.Y. Zhang, F. Sun, Z. Chen, Y. Yang, B.L. Shen, J. Li, and F. Prima, Strong and Ductile Beta Ti-18Zr-13Mo Alloy with Multimodal Twinning, Mater. Res. Lett., 2019, 7, p 251–257.

    Google Scholar 

  27. X. Song, C. **ong, F. Zhang, Y. Nie, and Y. Li, Strain Induced Martensite Stabilization in β Ti-Zr-Nb Shape Memory Alloy, Mater. Lett., 2019, 259, 126914.

    Google Scholar 

  28. A. Konopatsky, T.O. Teplyakova, D.V. Popova, K.Y. Vlasova, S.D. Prokoshkin, and D.V. Shtansky, Surface Modification and Antibacterial Properties of Superelastic Ti-Zr-Based Alloys for Medical Application, Coll. Surf. Biointerfaces, 2021, 209, 112183.

    Google Scholar 

  29. M.F. Ijaz, H.Y. Kim, H. Hosoda, and S. Miyazaki, Superelastic Properties of Biomedical (Ti-Zr)-Mo-Sn Alloys, Mater. Sci. Eng. C, 2015, 48, p 11–20.

    CAS  Google Scholar 

  30. A. Biesiekierski, D. **, Y. Li, J. Lin, K.S. Munir, Y. Yamabe-Mitarai, and C. Wen, Extraordinary High Strength Ti-Zr-Ta Alloys Through Nanoscaled, Dual-Cubic Spinodal Reinforcement, Acta. Biomater., 2017, 53, p 549–558.

    CAS  Google Scholar 

  31. S. Li, M.S. Choi, and T.H. Nam, Effect of Thermo-Mechanical Treatment on Microstructural Evolution and Mechanical Properties of a Superelastic Ti-Zr-Based Shape Memory Alloy, Mater. Sci. Eng. A, 2020, 789, p 139664.

    CAS  Google Scholar 

  32. J.Y. Zhang, J.S. Li, G.F. Chen, L. Liu, Z. Chen, Q.K. Meng, B.L. Shen, F. Sun, and F. Prima, Fabrication and Characterization of a Novel β Metastable Ti-Mo-Zr Alloy with Large Ductility and Improved Yield Strength, Mater. Charact., 2018, 139, p 421–427.

    CAS  Google Scholar 

  33. S. Miyazaki, My Experience with Ti-Ni-Based and Ti-Based shape memory alloys, Shap. Mem. Superelasticity, 2017, 3, p 279–314.

    Google Scholar 

  34. C.H. Wang, M. Liu, P.F. Hu, J.C. Peng, J.A. Wang, Z.M. Ren, and G.H. Cao, The Effects of α″ and ω Phases on the Superelasticity and Shape Memory Effect of Binary Ti-Mo Alloys, J. Alloy Compd., 2017, 720, p 488–496.

    CAS  Google Scholar 

  35. T. Inamura, R. Shimizu, H.Y. Kim, S. Miyazaki, and H. Hosoda, Optimum Rolling ratio for Obtaining 001 Recrystallization Texture in Ti-Nb-Al Biomedical Shape Memory Alloy, Mater. Sci. Eng. A, 2016, 61, p 499–505.

    CAS  Google Scholar 

  36. T. Inamura, Y. Kinoshita, J.I. Kim, H.Y. Kim, and S. Miyazaki, Effect of 001 <110> Texture on Superelastic Strain of Ti-Nb-Al Biomedical Shape Memory Alloys, Mater. Sci. Eng. A, 2006, 438, p 865–869.

    Google Scholar 

  37. T. Inamura, H.Y. Kim, and H. Tobe, Origin of 332 Twinning in Metastable β-Ti Alloys, Acta Mater., 2014, 64, p 345–355.

    Google Scholar 

  38. F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, P. Castany, C. Curfs, P.J. Jacques, and F. Prima, Investigation of Early Stage Deformation Mechanisms in a Metastable β Titanium Alloy Showing Combined Twinning-Induced Plasticity and Transformation-Induced Plasticity Effects, Acta Mater., 2013, 61, p 6406–6417.

    CAS  Google Scholar 

  39. P.J. Buenconsejo, H.Y. Kim, H. Hosoda, and S. Miyazaki, Shape Memory Behavior of Ti-Ta and its Potential as a High-Temperature Shape Memory Alloy, Acta Mater., 2009, 57, p 1068–1077.

    CAS  Google Scholar 

  40. S. Miyazaki, H.Y. Kim, and H. Hosoda, Development and Characterization of Ni-Free Ti-Base Shape Memory and Superelastic Alloys, Mater. Sci. Eng. A, 2006, 25, p 438–440.

    Google Scholar 

  41. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, and M. Morinaga, Phase Stability Change with Zr Content in β-Type Ti-Nb Alloys, Scripta Mater., 2007, 57, p 1000–1003.

    CAS  Google Scholar 

  42. Y.L. Hao, S.J. Li, S.Y. Sun, and R. Yang, Effect of Zr and Sn on Young’s Modulus and Superelasticity of Ti-Nb-Based Alloys, Mater. Sci. Eng. A, 2006, 441, p 112–118.

    Google Scholar 

  43. J.J. Gao, I. Thibon, D. Laillé, P. Castany, and T. Gloriant, Influence of Texture and Transformation Strain on the Superelastic Performance of a New Ti-20Zr-3Mo-3Sn Alloy, Mater. Sci. Eng. A, 2019, 762, 138075.

    CAS  Google Scholar 

  44. S. Hanada, M. Ozeki, and O. Izumi, Deformation Characteristics in β Phase Ti-Nb Alloys, Metall. Trans. A, 1985, 16, p 789–795.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (2017YFB0304700, 2017YFB0304704), the science and technology planning project of Guangdong province (No. 2017B090903005) and the Education Department of Guangdong Province No. 2020ZDZX2024. XJW acknowledges the financial support from **an University (No. 21620110).

Author information

Authors and Affiliations

Authors

Contributions

HL performed investigation, data curation, writing—original draft preparation. JL did validation and investigation. WL and XZ contributed to validation and data curation. WL was involved in validation and supervision. XW was involved in writing—review & editing, funding acquisition, conceptualization, and supervision.

Corresponding authors

Correspondence to Wei Li or **aojian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, J., Lai, W. et al. Effect of Equiatomic Ti/Zr Substitution on the Shape Memory Effect of Biomedical Ti-Zr-Mn-Mo Alloys. J. of Materi Eng and Perform 31, 8721–8730 (2022). https://doi.org/10.1007/s11665-022-06963-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06963-6

Keywords

Navigation