Log in

Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ti–Ni-based shape memory alloys (SMAs) are among the alloys used as biomaterials. The degree of biocompatibility can be improved by adding different biocompatible elements to these alloy families. In this study, the microstructure, phase transformation temperatures, and biocompatibility of Ti–Ni–Nb–Zr SMAs were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy (OM), differential scanning calorimetry (DSC), and electrochemical potentiodynamic measurements, respectively. The arc melting method was used to manufacture alloys with nominal compositions of Ti–10Zr–(40-x) Ni–xNb (\(x=0\), 2 and 4 at.%). The phase transformation of B19′ ↔ B2 was observed in DSC results, which indicated that the alloys have shape memory behavior. Although martensite plates and dendritic structures are noticeable in OM images, XRD and SEM analyses revealed β-Nb, B19′, B2, and some precipitation phases. The corrosion resistance of the alloys was determined by potentiodynamic corrosion analysis. The alloy with 2 at. % Nb instead of Ni showed the best degree of biocompatibility compared to the other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Qader I N, Kök M, Dağdelen F and Aydogdu Y, El-Cezerî Journal of Science and Engineering 6 (2019) 755.

    Google Scholar 

  2. Balcı E and Dagdelen F, Iranian Journal of Science and Technology, Transactions A: Science 46 (2022) 353.

    Article  Google Scholar 

  3. Ercan E, Dağdelen F, Mediha K and Balci E, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8 (2019) 1194.

    Google Scholar 

  4. Kalra S, Bhattacharya B and Munjal B, SmMaS 26 (2017) 095015.

    Google Scholar 

  5. Rodrigue H, Wang W, Han M-W, Kim T J and Ahn S-H, Soft robotics 4 (2017) 3.

    Article  Google Scholar 

  6. Jhou W-T, Wang C, Ii S, Chiang H-S and Hsueh C-H, J Alloy Compd 738 (2018) 336.

    Article  CAS  Google Scholar 

  7. Wen C, Yu X, Zeng W, Zhao S, Wang L, Wan G, Huang S, Grover H and Chen Z, AIMS Materials Science 5 (2018) 559.

    Article  CAS  Google Scholar 

  8. Balci E, Karaderi C C, Kahraman H and Dağdelen F, International Journal of Innovative Engineering Applications 6 (2022) 59.

    Google Scholar 

  9. Oshida Y and Miyazaki S, Zairyo-to-Kankyo 40 (1991) 834.

    Article  CAS  Google Scholar 

  10. Li D, Scripta Mater. 34 (1996) 195.

    Article  CAS  Google Scholar 

  11. Lin H, He J, Chen K, Liao H and Lin K, Metallurgical and Materials Transactions A 28 (1997) 1871.

    Article  Google Scholar 

  12. Frenzel J, George E P, Dlouhy A, Somsen C, Wagner M-X and Eggeler G, Acta Mater 58 (2010) 3444.

    Article  CAS  Google Scholar 

  13. Kanca M S, Kök M and Qader I N, J. Therm. Anal. Calorim. 147 (2022) 1.

    Article  CAS  Google Scholar 

  14. Zhang Y-q, Jiang S-y, Zhao Y-n and Tang M, Transactions of Nonferrous Metals Society of China 22 (2012) 2685.

    Article  CAS  Google Scholar 

  15. Mousavi T, Karimzadeh F and Abbasi M, Materials Science and Engineering: A 487 (2008) 46.

    Article  Google Scholar 

  16. Ying C, Hai-Chang J, Li-Jian R, Li X and **n-Qing Z, Intermetallics 19 (2011) 217.

    Article  Google Scholar 

  17. Hamilton R F, Lanba A, Ozbulut O E and Tittmann B R, Shape Memory and Superelasticity 1 (2015) 117.

    Article  Google Scholar 

  18. Dagdelen F, Balci E, Qader I, Ozen E, Kok M, Kanca M, Abdullah S and Mohammed S, JOM 72 (2020) 1664.

    Article  CAS  Google Scholar 

  19. Dalstra M, Denes G and Melsen B, Clinical orthodontics and research 3 (2000) 6.

    Article  CAS  Google Scholar 

  20. Xu J, Weng X-J, Wang X, Huang J-Z, Zhang C, Muhammad H, Ma X and Liao Q-D, PloS one 8 (2013) e79289.

    Article  Google Scholar 

  21. Dagdelen F and Aydogdu Y, J. Therm. Anal. Calorim. 136 (2019) 637.

    Article  CAS  Google Scholar 

  22. Hua N, Huang L, Wang J, Cao Y, He W, Pang S and Zhang T, J. Non·Cryst. Solids 358 (2012) 1599.

    Article  CAS  Google Scholar 

  23. Black J, Biological performance of materials: fundamentals of biocompatibility, Crc Press, 2005

    Book  Google Scholar 

  24. Li B, Rong L and Li Y, Science in China Series E: Technological Sciences 42 (1999) 94.

    Article  CAS  Google Scholar 

  25. Balci E, Dagdelen F, Qader I N and Kok M, The European Physical Journal Plus 136 (2021) 1.

    Article  Google Scholar 

  26. Dagdelen F, Balci E, Qader I, Aydogdu Y and Saydam S, Physics of Metals and Metallography 122 (2021) 1572.

    Article  CAS  Google Scholar 

  27. Mitwally M E and Farag M, Materials Science and Engineering: A 519 (2009) 155.

    Article  Google Scholar 

  28. Sun G, Wang X, Wang Y, Woo W, Wang H, Liu X, Chen B, Fu Y Q, Sheng L and Ren Y, Materials Science and Engineering: A 560 (2013) 458.

    Article  CAS  Google Scholar 

  29. Shahzad K, Sliem M H, Shakoor R A, Radwan A B, Kahraman R, Umer M A, Manzoor U and Abdullah A M, Sci. Rep. 10 (2020) 4314.

    Article  Google Scholar 

Download references

Acknowledgements

This article is a part of the Ph.D. study of S. S. ABDULLAH.

Author information

Authors and Affiliations

Authors

Contributions

SSA prepared the samples. EB performed the DSC measurements. FD performed the EDX–SEM and corrosion tests. SSA, EB, INQ, and FD analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to F. Dagdelen.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest in the printing of this manuscript. The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, S.S., Balci, E., Qader, I.N. et al. Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Memory Alloys. Trans Indian Inst Met 76, 1237–1242 (2023). https://doi.org/10.1007/s12666-022-02841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02841-w

Keywords

Navigation