Log in

Microstructures and Mechanical Properties of an Al-Zn-Mg-Cu Alloy Processed by Two-Step Aging Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the mechanical properties and microstructures of an Al-Zn-Mg-Cu alloy subject to two-step aging treatment were systematically investigated. The results indicate that the mechanical strength and tensile ductility of the alloy can be significantly improved by pre-aging treatment at 120 °C for 6 h and then by second-step aging treatment at 165 °C for 12 h. After second-step aging treatment at 165 °C for 12 h, the tensile strength and yield strength of the alloy reach 718 and 654 MPa, increased by ~ 23 and ~ 35%, respectively, compared to the alloy without aging treatment. The increment in the strength is mainly attributed to the formation of ultrafine metastable η′ phase dispersed in the matrix. The fracture mode of the aging treated alloy includes both intergranular fracture and dimpled transgranular fracture. The coarse grain boundary precipitates (MgZn2 phase) and the wide precipitation free zones are beneficial to the tensile ductility of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent Advances in Ageing of 7xxx Series Aluminum Alloys: A Physical Metallurgy Perspective, J. Alloy. Compd., 2019, 781, p 945–983

    Article  CAS  Google Scholar 

  2. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    Article  CAS  Google Scholar 

  3. E.M. Mazzer, C.R.M. Afonso, M. Galano, C.S. Kiminami, and C. Bolfarini, Microstructure Evolution and Mechanical Properties of Al-Zn-Mg-Cu Alloy Reprocessed by Spray-Forming and Heat Treated at Peak Aged Condition, J. Alloy. Compd., 2013, 579, p 169–173

    Article  CAS  Google Scholar 

  4. Y.G. Liao, X.Q. Han, M.X. Zeng, and M. **, Influence of Cu on Microstructure and Tensile Properties of 7xxx Series Aluminum Alloy, Mater. Des., 2015, 66, p 581–586

    Article  CAS  Google Scholar 

  5. M.X. Guo, J.Q. Du, C.H. Zheng, J.S. Zhang, and L.G. Zhuang, Influence of Zn Contents on Precipitation and Corrosion of Al-Mg-Si-Cu-Zn Alloys for Automotive Applications, J. Alloy. Compd., 2019, 778, p 256–570

    Article  CAS  Google Scholar 

  6. P. **e, S. Chen, K. Chen, H. Jiao, L. Huang, Z. Zhang, and Z. Yang, Enhancing the Stress Corrosion Cracking Resistance of a Low-Cu Containing Al-Zn-Mg-Cu Aluminum Alloy by Step-Quench and Aging Heat Treatment, Corros. Sci., 2019, 161, p 108184

    Article  Google Scholar 

  7. Z. Bai, F. Qiu, Y. Liu, W. Zhou, and Q. Jiang, Age Hardening and Mechanical Properties of Cast Al-Cu Alloy Modified by La and Pr, Adv. Eng. Mater., 2015, 17, p 143–147

    Article  CAS  Google Scholar 

  8. G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516

    Article  CAS  Google Scholar 

  9. L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al-Zn-Mg Alloys and Their Role in Artificial Aging, Acta Mater., 2001, 49, p 3443–3451

    Article  CAS  Google Scholar 

  10. J. Chen, L. Zhen, S. Yang, W. Shao, and S. Dai, Investigation of Precipitation Behavior and Related Hardening in AA 7055 Aluminum Alloy, Mater. Sci. Eng., A, 2009, 500, p 34–42

    Article  Google Scholar 

  11. X.Z. Li, V. Hansen, J. Gjonnes, and L.R. Wallenberg, HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys, Acta Mater., 1999, 47, p 2651–2659

    Article  CAS  Google Scholar 

  12. C. Wolverton, Crystal Structure and Stability of Complex Precipitate Phases in Al-Cu-Mg-(Si) and Al-Zn-Mg Alloys, Acta Mater., 2001, 49, p 3129–3142

    Article  CAS  Google Scholar 

  13. D.M. Liu, B.Q. **ong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, F. Wang, and H.V. Liu, Quantitative Study of Precipitates in an Al-Zn-Mg-Cu Alloy Aged with Various Typical Tempers, Mater. Sci. Eng., A, 2013, 588, p 1–6

    Article  CAS  Google Scholar 

  14. Z. Cvijović, M. Vratnica, and M. Rakin, Micromechanical Modelling of Fracture Toughness in Overaged 7000 Alloy Forgings, Mater. Sci. Eng., A, 2006, 434, p 339–346

    Article  Google Scholar 

  15. Z. Cvijović, M. Rakin, M. Vratnica, and I. Cvijović, Microstructural Dependence of Fracture Toughness in High-Strength 7000 Forging Alloys, Eng. Fract. Mech., 2008, 75, p 2115–2129

    Article  Google Scholar 

  16. O.E. Alarcon, A.M.M. Nazar, and W.A. Monteiro, The Effect of Microstructure on the Mechanical Behavior and Fracture Mechanism in a 7050-T76 Aluminum Alloy, Mater. Sci. Eng., A, 1991, 138, p 275–285

    Article  Google Scholar 

  17. N.M. Han, X.M. Zhang, S.D. Liu, B. Ke, and X. **n, Effects of Pre-stretching and Ageing on the Strength and Fracture Toughness of Aluminum Alloy 7050, Mater. Sci. Eng., A, 2011, 528, p 3714–3721

    Article  Google Scholar 

  18. C. Mondal and A.K. Mukhopadhyay, On the Nature of T(Al2Mg3Zn3) and S(Al2CuMg) Phases Present in As-Cast and Annealed 7055 Aluminum Alloy, Mater. Sci. Eng., A, 2005, 391, p 367–376

    Article  Google Scholar 

  19. K. Wen, B.Q. **ong, Y.G. Zhang, Z.H. Li, X.W. Li, S.H. Huang, L.Z. Yan, H.W. Yan, and H.W. Liu, Over-Aging Influenced Matrix Precipitate Characteristics Improve Fatigue Crack Propagation in a High Zn-Containing Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng., A, 2018, 716, p 42–54

    Article  CAS  Google Scholar 

  20. R. Ferragut, A. Somoze, and A. Tolley, Microstructural Evolution of 7012 Alloy during the Early Stages of Artificial Ageing, Acta Mater., 1999, 47, p 4355–4364

    Article  CAS  Google Scholar 

  21. J.D. Embury, D.J. Lloyd, and T.R. Ramachandran, 22-Strengthening Mechanisms in Aluminum Alloys, Treatise Mater. Sci. Technol., 1989, 31, p 579–601

    Article  CAS  Google Scholar 

  22. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys-I. The Model, Acta Metall. Mater., 1990, 38, p 1789–1802

    Article  CAS  Google Scholar 

  23. N. Ryum, The Influence of a Precipitate-Free Zone on the Mechanical Properties of an Al-Mg-Zn Alloy, Acta Metall., 1968, 16, p 327–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Natural Science Foundation of China (51531009 and 51820105001). We would like to thank the Advanced Research Center of Central South University for TEM technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Gong, Y., Du, Y. et al. Microstructures and Mechanical Properties of an Al-Zn-Mg-Cu Alloy Processed by Two-Step Aging Treatment. J. of Materi Eng and Perform 29, 4404–4411 (2020). https://doi.org/10.1007/s11665-020-04980-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04980-x

Keywords

Navigation