Log in

Enhanced Electrostrictive Properties and Thermal Stability in Zn-Modified 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMNT) relaxor ferroelectric ceramic is a good dielectric and electrostrictive actuator material. Nevertheless, important engineering problems of further enhancing its electrostrictive effect and increasing its thermal stability must be solved to promote its applications. In this work, the Zn-doped PMNT (PMNT/xZn2+) ceramics were prepared by the niobite precursor synthesis method. The transition of the PMNT/xZn2+ ceramics from relaxor ferroelectric to normal ferroelectric was realized, increasing the residual polarization (Pr), saturation polarization (Pm), the ferroelectric-paraelectric transition temperature at εmax (Tm) and electric field induced strain (S) from x = 0.0 (Pr = 5.3294 μC/cm2, Pm = 26.6690 μC/cm2, Tm = 45°C, S = 1.08‰) to x = 8.0 (Pr = 19.9005 μC/cm2, Pm = 30.3718 μC/cm2, Tm = 70°C, S = 1.42‰). In addition, the upper temperature limit of the materials with a large electrostrictive effect (greater than 1‰) was extended from 40°C to 80°C. The main reason for these improved properties is that the magnesium ions were replaced by the highly reactive zinc ions at the B-site of the ferroelectric perovskite structure during the sintering and formed a certain amount of component segregation that increased the size of the polar nanoregions/domains and improved the polarizability of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  CAS  Google Scholar 

  2. M.J. Pan and C.A. Randall, IEEE Electr. Insul. Mag. 26, 44 (2010).

    Article  CAS  Google Scholar 

  3. L.F. Francis and D.A. Payne, J. Am. Ceram. Soc. 74, 3000 (1991).

    Article  CAS  Google Scholar 

  4. B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, and E. Suard, Phys. Rev. B 65, 24104 (2001).

    Article  Google Scholar 

  5. D.H. Lee and N.K. Kim, Ferroelectrics 248, 5 (2000). https://doi.org/10.1080/00150190008223664.

    Article  CAS  Google Scholar 

  6. D.J. Voss, S.L. Swartz, and T.R. Shrout, Ferroelectrics 50, 203 (1983).

    Article  Google Scholar 

  7. A.C. Caballero, J.F. Fernández, C. Moure, P. Durán, and Y.M. Chiang, J. Am. Ceram. Soc. 81, 939 (1998).

    Article  CAS  Google Scholar 

  8. M. Promsawat, A. Watcharapasorn, S. Jiansirisomboon, and Z.G. Ye, J. Am. Ceram. Soc. 98, 848 (2015).

    Article  CAS  Google Scholar 

  9. X.L. Chao, J.J. Wang, C. Kang, M.Y. Dong, and Z.P. Yang, J. Electron. Mater. 44, 3415 (2015).

    Article  CAS  Google Scholar 

  10. T. Mahapatra, S. Halder, S. Bhuyan, and R.N.P. Choudhary, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6583-0.

    Article  Google Scholar 

  11. I.Y. Kang, I.T. Seo, Y.J. Cha, J.H. Choi, S. Nahm, T.H. Sung, and J.H. Paik, J. Eur. Ceram. Soc. 32, 2381 (2012).

    Article  CAS  Google Scholar 

  12. S.E.E. Park and W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 6, 11 (2002).

    Article  CAS  Google Scholar 

  13. G.S. Xu, K. Chen, D.F. Yang, and J.B. Li, Appl. Phys. Lett. 90, 032901 (2007).

    Article  Google Scholar 

  14. Z.G. Ye, MRS Bull. 34, 277 (2009).

    Article  CAS  Google Scholar 

  15. S.J. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).

    Article  Google Scholar 

  16. S.L. Swartz and T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982).

    Article  CAS  Google Scholar 

  17. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  18. A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, and E.V. Sahkar, Phys. Rev. B 68, 052102 (2003).

    Article  Google Scholar 

  19. S. De Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, and F. Gervais, J. Eur. Ceram. Soc. 34, 3649 (2014).

    Article  Google Scholar 

  20. P. Ravindranathan, S. Komarneni, A.S. Bhalla, and R. Roy, J. Am. Ceram. Soc. 74, 2996 (1991).

    Article  CAS  Google Scholar 

  21. R. Zuo, T. Granzow, D.C. Lupascu, and J. Rodel, J. Am. Ceram. Soc. 90, 1101 (2007).

    Article  CAS  Google Scholar 

  22. P. Augustine, M. Rath, and M.S.R. Rao, Ceram. Int. 43, 9408 (2017).

    Article  CAS  Google Scholar 

  23. M. Promsawat, A. Watcharapasorn, H.N. Tailor, S. Jiansirisomboon, and Z.G. Ye, J. Appl. Phys. 113, 204101 (2013).

    Article  Google Scholar 

  24. K. Okazaki and K. Nagata, J. Am. Ceram. Soc. 56, 82 (1973).

    Article  CAS  Google Scholar 

  25. B.M. **, J. Kim, and S.C. Kim, Appl. Phys. A Mater. Sci. Process. 65, 53 (1997).

    Article  CAS  Google Scholar 

  26. R. Cao, G. Li, J. Zeng, S. Zhao, L. Zheng, and Q. Yin, J. Am. Ceram. Soc. 93, 737 (2010).

    Article  CAS  Google Scholar 

  27. K. Uchino, S. Nomura, L.E. Cross, J. Jang, and R.E. Newhnam, J. Appl. Phys. 51, 1142 (1980).

    Article  CAS  Google Scholar 

  28. S.M. Pilgrim, M. Massuda, J.D. Prodey, and A.P. Ritter, J. Am. Ceram. Soc. 75, 1964 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China–NSAF (Grant No. U1230116), the National 973 Project of China (Grant No. 2015CB654602) and ‘‘111’’ Project (B14040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Guo or Yujun Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3823 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Feng, Y., Zhang, H. et al. Enhanced Electrostrictive Properties and Thermal Stability in Zn-Modified 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 Ceramics. J. Electron. Mater. 49, 1150–1160 (2020). https://doi.org/10.1007/s11664-019-07812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07812-4

Keywords

Navigation