Log in

Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.S. Lai, P·F. Yang, C.L. Yeh. Microelectron. Reliab. 46, 645 (2006) doi:10.1016/j.microrel.2005.07.005

    Article  CAS  Google Scholar 

  2. M. Abtew, G. Selvaduray. Mater. Sci. Eng. Rep. 27, 95 (2000) doi:10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  3. N. Chawla, R.S. Sidhu, J. Mater. Sci. Mater. Electron. 18, 175 (2007) doi:10.1007/s10854-006-9028-0

    Article  CAS  Google Scholar 

  4. X. Deng, M. Koopman, N. Chawla, K·K. Chawla, Mater. Sci. Eng. A 364, 240 (2004) doi:10.1016/j.msea.2003.08.032

    Article  Google Scholar 

  5. Y.S. Lai, H·C. Chang, C.L. Yeh, Microelectron. Reliab. 47, 2179 (2007) doi:10.1016/j.microrel.2006.11.015

    Article  CAS  Google Scholar 

  6. Y. **a, X. **e, J. Alloy. Comp. 457, 198 (2008) doi:10.1016/j.jallcom.2007.03.038

    Article  CAS  Google Scholar 

  7. Y.T. Chin, P·K. Lam, H·K. Yow, T.Y. Tou, Microelectron. Reliab. 48, 1079 (2008) doi:10.1016/j.microrel.2008.04.003

    Article  CAS  Google Scholar 

  8. M. Amagai, Y. Toyoda, and T. Tajima, Proc. 53rd Electron. Comp. Tech. Conf. (New Orleans, LA: IEEE, 2003), p. 317.

  9. F. Song, S.W.R. Lee, K. Newman, B. Sykes, and S. Clark, Proc. 57th Electron. Comp. Tech. Conf. (Reno, NV: IEEE, 2007), p. 364.

  10. S.-J. Jeon, S. Hyun, H.-J. Lee, J.-W. Kim, S.-S. Ha, J.-W. Yoon, S.-B. Jung, and H.-J. Lee, Microelectron. Eng. 85, 1967 (2008).

    Google Scholar 

  11. E.H. Wong, R. Rajoo, S.K.W. Seah, C.S. Selvanayagam, W.D. van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owens, L.C. Tan, M. Leoni, P.L. Eu, Y.-S. Lai, C.-L. Yeh, (2008) Microelectron. Reliab. 48:1069. 10.1016/j.microrel.2008.04.008

    Article  CAS  Google Scholar 

  12. P. Majumdar, S·B. Singh, M. Chakraborty, Mater. Sci. Eng. A 489, 419 (2008) doi:10.1016/j.msea.2007.12.029

    Article  Google Scholar 

  13. C. Basaran, J. Jiang, Mech. Mater. 34, 349 (2002) doi:10.1016/S0167-6636(02)00131-X

    Article  Google Scholar 

  14. R.J. McCabe, M.E. Fine, Scr. Mater. 39, 189 (1998) doi:10.1016/S1359-6462(98)00149-3

    Article  CAS  Google Scholar 

  15. C. Andersson, P. Sun, J. Liu, J. Alloy. Comp. 457, 97 (2008) doi:10.1016/j.jallcom.2007.03.028

    Article  CAS  Google Scholar 

  16. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, H.B. Tejada, Mater. Sci. Eng. A 460–461, 595 (2007) doi:10.1016/j.msea.2007.01.145

    Google Scholar 

  17. K. Zeng, K·N. Tu, Mater. Sci. Eng. Rep. 38, 55 (2002) doi:10.1016/S0927-796X(02)00007-4

    Article  Google Scholar 

  18. M. Arra, D. **e, and D. Shangguan, Proc. 52nd Electron. Comp. Tech. Conf. (San Diego, CA: IEEE, 2002), p. 1256.

  19. R.W. Hertzberg (1995) Deformation and Fracture Mechanics of Engineering Materials. 4th ed. John Wiley & Sons, Inc, New York.

    Google Scholar 

  20. Y. Zhao, C. Basaran, C. Cartwright, T. Dishongh, Mech. Mater. 32, 161 (2000) doi:10.1016/S0167-6636(99)00053-8

    Article  Google Scholar 

  21. J. Beddoes, M.J. Bibby, Principles of Metal Manufacturing Processes (London: Arnold, 1999).

    Google Scholar 

  22. L. Xu, J.H.L. Pang, Thin Solid Films 504, 362 (2006) doi:10.1016/j.tsf.2005.09.056

    Article  ADS  CAS  Google Scholar 

  23. J. Caers, X. Zhao, E.H. Wong, S. Seah, C.S. Selvanayagam, W.D. van Driel, N. Owens, M. Leoni, L.C. Tan, P.L. Eu, Y.-S. Lai, and C.-L. Yeh, 58th Electronic Components and Technology Conference (Lake Buena Vista, FL: ECTC, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeman Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, T., Kim, Y., Kim, J. et al. Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests. J. Electron. Mater. 38, 410–414 (2009). https://doi.org/10.1007/s11664-008-0633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0633-y

Keywords

Navigation