Log in

Effects of BaO on the Viscosity and Structure of a New Fluorine-Free CaO-Al2O3-TiO2-Based Mold Flux for High Titanium Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Herein, the effects of BaO (i.e. 5, 10, 15 and 20 pct) on the viscosity and structures of a new fluorine-free CaO-Al2O3-TiO2-based mold flux with w(CaO pct)/w(Al2O3 pct) ratio of 1.0 are investigated using a rotary viscometer, molecular dynamics (MD) simulations, and Raman spectroscopy. The viscosity of the samples (the testing temperature is 1300 °C) decrease from 0.46 to 0.21 Pa·s as the BaO content increased from 5 to 20 pct, and the activation energy decreases from 150.7 to 119.7 kJ·mol−1, the break temperature (Tbr) decreases from 1475 K to 1429 K which are achieved as the initial testing temperature of 1300 °C decreased under the furnace cooling. With the addition of BaO, the MD simulation results suggest that the coordination numbers (CNs) of Al (Ti)-O are reduced, while Q3, Q4, and Q5 are depolymerized into Q0, Q1, and Q2. The Raman spectroscopy results illustrate that the bridge oxygens (BOs) originating from the Ti-O-Ti (Al) linkages and Q2 (Al-O) are depolymerized into Q1 (Si-O) and Q0 (Al-O) as the BaO content is increased. The Raman spectroscopy results agree well with those of the MD simulation. Therefore, BaO can simplify the structure of melts and decrease the viscosity of such systems. This work not only presents a new fluorine-free CaO-Al2O3-TiO2-based mold flux, but also deepens the understandings of the role of BaO in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. J. H. Park, S. B. Lee, H. R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853-61.

    Article  CAS  Google Scholar 

  2. 2. D. S. Kim, J. H. Park, S. B. Lee, and H. G. Lee: Rev. Metall., 2004, vol. 4, pp. 291-99.

    Article  Google Scholar 

  3. 3. Z. L. Piao, L. G. Zhu, X. J. Wang, Z. X. Liu, H. B. **, X. S. Zhang, Q. L. Wang and C. Kong: High Temp. Mater. Proc., 2019, vol. 38, pp. 873-83.

    Article  CAS  Google Scholar 

  4. 4. S. X. Liu, C. J. Zhang, D. Lv, D. G. Ma and S. Li: Iron Steel Van. Tit., 2016, vol. 37, pp. 43-49.

    CAS  Google Scholar 

  5. 5. Z. J. Huang, Y. T. Wang and J. G. Hu: J. Iron steel Res., 2012, vol. 40, pp. 20-22.

    CAS  Google Scholar 

  6. 6. J. B. Chang, D. G. Ma, S. W. Li, Z. J. Han, S. X. Liu, Y. B. **ang: steelmaking, 2013, vol. 29, pp. 62-66.

    CAS  Google Scholar 

  7. 7. J. B. Chang, D. G. Ma, S. W. Li, Z. J. Han, S. X. Liu and Z. Y. Xuan: Iron Steel, 2013, vol. 48, pp. 27-31.

    Article  CAS  Google Scholar 

  8. 8. J. L. Li, K. C. Chou, and Q. F. Shu: ISIJ Int., 2020, vol. 60, pp. 51-57.

    Article  CAS  Google Scholar 

  9. 9. X. J. Fu, G. H. Wen, P. Tang, Q. Liu and Z. Y. Zhou: Ironmak. Steelmak., 2014, vol. 41, 342-49.

    Article  CAS  Google Scholar 

  10. 10. B. X. Lu, K. Chen, W. L. Wang and B. B. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1496-09.

    Article  CAS  Google Scholar 

  11. 11. D. **ao, W. L. Wang and B. X. Lu: Metall. Mater. Trans. B, 2015, vol. 46, pp. 873-81.

    Article  CAS  Google Scholar 

  12. 12. H. Wang, P. Tang, G. H. Wen and X. Yu: Chin. J. Process Eng., 2010, vol. 10, pp. 905-10.

    CAS  Google Scholar 

  13. 13. S. Y. Choi, D. H. Lee, D. W. Shin, S. Y. Choi, J. W. Cho and J. M. Park: J. Non-Cryst. Solids, 2004, vol. 345&346, pp. 157-60.

    Article  CAS  Google Scholar 

  14. 14. W. L. Wang, D. X. Cai and L. Zhang: ISIJ Int., 2018, vol. 58, pp. 1957-64.

    Article  CAS  Google Scholar 

  15. 15. A. B. Fox, K. C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J. J. Laraudogoitia and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051-58.

    Article  CAS  Google Scholar 

  16. 16. X. Qi, G. H. Wen and P. Tang: J. Non-Cryst. Solids, 2008, vol. 354, pp. 5444-52.

    Article  CAS  Google Scholar 

  17. 17. H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 441-49.

    Article  CAS  Google Scholar 

  18. 18. G. R. Li: J. Iron steel Res., 2003, vol. 10, pp. 6-9.

    Google Scholar 

  19. 19. Z. Y. Zhu, W. D. Han, C. J. Liu and M. F. Jiang: J. Iron steel Res., 2005, vol. 12, pp. 23-26.

    CAS  Google Scholar 

  20. 20. T. Wu, Q. Wang, S. P. He, J. F. Xu, X. Long and Y. J. Lu: Steel Res. Int., 2012, vol. 83, pp1-9.

    Article  CAS  Google Scholar 

  21. 21. E. Z. Gao, W. L. Wang, L, Zhang: J. Non-Cryst. Solids, 2017, vol. 473, pp. 79-86.

    Article  CAS  Google Scholar 

  22. 22. Z. J. Wang, II Sohn: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4285-96.

    Article  CAS  Google Scholar 

  23. 23. Z. R. Li, X. C. You, M. Li, Q. Wang, S. P. He, Q. Q. Wang: Metals, 2019, vol. 9, pp. 142-155.

    Article  CAS  Google Scholar 

  24. G. H. Kim and II Sohn: Metall. Mater. Trans. B., 2011, vol. 42, pp. 1218-23.

    Article  CAS  Google Scholar 

  25. H. Kim, H. Matsuura, F. Tsukihashi, W. L. Wang, D. J. Min and II Sohn: Metall. Mater. Trans. B., 2013, vol. 44, pp. 5-12.

    Article  CAS  Google Scholar 

  26. 26. P. C. **ao, Z. X. Liu, L. G. Zhu, Z. P. Wang and Z. L. Piao: High Temp. Mater. Proc., 2019, vol. 38, pp. 92-00.

    Article  CAS  Google Scholar 

  27. 27. S. P. Huang, G. C. Jiang; K. D. Xu, F. Yoshida and J. L. You: Metall. Mater. Trans. B, 2000, vol. 31, pp 1241-45.

    Article  CAS  Google Scholar 

  28. 28. P. Ganster, M. Benoit, W. Kob and J. M. Delaye: J. Chem. Phys. 2004, vol. 120, pp. 10172-81.

    Article  CAS  Google Scholar 

  29. 29. G. Z. Fan, S. P. Wu, T. Wu and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2005-13.

    Article  CAS  Google Scholar 

  30. K. Hirao: Pasokon ni yoru sairyou sekkei, Shokabo, 1994.

  31. 31. K. Hirao, K. Kawamura: Materials Design Using Personal Computer, Shokabo, Tokyo, 1994.

    Google Scholar 

  32. 32. J. M. Delaye, V. Louis-Achille, D. Ghaleb: J. Non-Cryst. Solids, 1997, vol. 210, pp. 232-42.

    Article  CAS  Google Scholar 

  33. 33. K. C. Mills and B. J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1-120.

    Article  CAS  Google Scholar 

  34. 34. R. Knoche, D. B. Dingwell, and S. L. Webb: Geochim. Cosmochim. Ac., 1995, Vol. 59, pp. 4645-52.

    Article  CAS  Google Scholar 

  35. 35. II. Sohn, W. Wang, H. Matsuura, F. Tsukihashi and D. J. Min: ISIJ Int., 2012, vol. 52, pp. 158-60.

    Article  CAS  Google Scholar 

  36. 36. H. Kim, W.H. Kim, II. Sohn and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 261-64.

    Article  CAS  Google Scholar 

  37. H. S. Park, H. Kim and II Sohn: Metall. Mater. Trans. B., 2011, vol. 42, pp. 324-30.

    Article  CAS  Google Scholar 

  38. H. S. Park, S. S. Park and II Sohn: Metall. Mater. Trans. B., 2011, vol. 42, pp. 692-99.

    Google Scholar 

  39. 39. S. Sridhar, K. C. Mills, O. D. C. Afrange, H. P. Lorz and R. Carli: Ironmak. Steelmak., 2000, vol. 27, pp. 238-42.

    Article  CAS  Google Scholar 

  40. 40. Y. Sasaki and K. Ishii: ISIJ Int., 2004, vol. 44, pp. 43-49.

    Article  CAS  Google Scholar 

  41. 41. Y. Sasaki, H. Urata and K. Ishii: ISIJ Int., 2003, vol. 43, pp. 1897-03.

    Article  CAS  Google Scholar 

  42. 42. A. C. Hannon and J. M. Parker: J. Non-Cryst. Solids, 2000, vol. 274, pp. 102-09.

    Article  CAS  Google Scholar 

  43. 43. B. W. M. Thomas, R. N. Mead and G. Mountjoy: J. Phys. Cond. Matt. 2006, vol. 18, pp. 4697-08.

    CAS  Google Scholar 

  44. 44. T. Wu, Q. Wang, T. H. Yao and S. P. He: J. Non-Cryst. Solids, 2016, vol. 435, pp. 17-26.

    Article  CAS  Google Scholar 

  45. 45. S. F. Zhang, X. Zhang, C. G. Bai, L. Y. Wen and X. W. Lv: ISIJ Int., 2013, vol. 53, pp. 1131-37.

    Article  CAS  Google Scholar 

  46. 46. V. V. Hoang: Phys. Stat. Sol., 2007, vol. 244, pp. 1280-87.

    Article  CAS  Google Scholar 

  47. 47. K. Shimoda and K. Saito: ISIJ Int., 2007, vol. 47, pp. 1275-79.

    Article  CAS  Google Scholar 

  48. 48. B. O. Mysen, D. Virgo and C. M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 290-01.

    Google Scholar 

  49. 49. D. Manara, A. Grandjean and D. R. Neuville: Am. Mineral., 2009, vol. 94, pp. 777-84.

    Article  CAS  Google Scholar 

  50. D. R. Neuville, L. Cormier, D. Massiot: Geochim. Cosmochim. Acta, vol. 68, pp. 5701-79 (2004).

    Article  CAS  Google Scholar 

  51. 51. L. M. Thompson and J. F. Stebbins: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1783-89.

    Article  CAS  Google Scholar 

  52. 52. D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol. 229, pp. 173-85.

    Article  CAS  Google Scholar 

  53. 53. M. Licheron, V. Montouillout, F. Millot and D. R. Neuville: J. Non-Cryst. Solids, 2011, vol. 357, pp. 2796-01.

    Article  CAS  Google Scholar 

  54. 54. D. R. Neuville, G. S. Henderson, L. Cormier and D. Massiot: Am. Mineral., 2010, vol. 95, pp. 1580-89.

    Article  CAS  Google Scholar 

  55. 55. J. L. Li, Q. F. Shu and K. C. Chou: Can. Metall. Quart., 2015, vol. 54, pp. 85-91.

    Article  CAS  Google Scholar 

  56. 56. Y. Q. Sun and Z. T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1549-54.

    Article  CAS  Google Scholar 

  57. 57. J. L. You, G. C. Jiang and K. D. Xu: J. Non-Cryst. Solids, 2001, vol. 282, pp. 125-31.

    Article  CAS  Google Scholar 

  58. G. H. Kim and II Sohn: Metall. Mater. Trans. B, 2014, vol. 45, pp. 86-95.

    Article  CAS  Google Scholar 

  59. 59. T. Yano, N. Kunimine, S. Shibata and M. Yamane: J. Non-Cryst. Solids, 2003, vol. 321, pp. 147-56.

    Article  CAS  Google Scholar 

  60. 60. T. Yano, N. Kunimine, S. Shibata, M. Yamane: J. Non-Cryst. Solids, 2003, vol. 321, pp. 137-46.

    Article  CAS  Google Scholar 

  61. 61. T. Yano, N. Kunimine, S. Shibata, M. Yamane: J. Non-Cryst. Solids, 2003, vol. 321, pp. 157-68.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to the National Natural Science Foundation of China (51974133 and 51774141); the Natural Science Foundation of Hebei Province of China (E2019209543 and E2018209195); and the National Youth Natural Science Foundation of China (51904107) for sponsoring this work. We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liguang Zhu or **ngjuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on April 28, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, Z., Zhu, L., Wang, X. et al. Effects of BaO on the Viscosity and Structure of a New Fluorine-Free CaO-Al2O3-TiO2-Based Mold Flux for High Titanium Steel. Metall Mater Trans B 51, 2119–2130 (2020). https://doi.org/10.1007/s11663-020-01915-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01915-8

Navigation