Log in

Thermomechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Corrosion-assisted propagation of an existing crack is profoundly influenced by the stress intensity at the crack tip. This article presents the first results of thermomechanical conditioning (TMC) for local manipulation of material at and ahead of the crack tip, in an attempt to retard/stop crack propagation. Prenotched round tensile specimens of mild steel were subjected to rotating bending to generate a fatigue precrack, and then to apply localized thermomechanical conditioning. The threshold stress intensity factor (K ISCC ) for stress corrosion cracking (SCC) of precracked specimens with and without TMC was determined in a caustic environment. Results suggest that TMC can increase K ISCC . Finite element analysis of the specimens suggests development of compressive stresses at and around the crack tip, which is expected to improve the resistance to stress corrosion crack propagation (since stress corrosion cracks can propagate only under tensile loading).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.K. Singh Raman: Mater. Sci. Eng. A, 2006, vol. 441, p. 342

    Article  Google Scholar 

  2. D. Singbeil, D. Tromans: Metall. Trans. A, 1982, vol. 13A, p. 1091

    CAS  Google Scholar 

  3. R. Sriram, D. Tromans: Metall. Trans. A, 1985, vol. 16A, p. 979

    CAS  Google Scholar 

  4. Y.C. Lam, J.R. Griffiths: Theor. Appl. Fract. Mech., 1990, vol. 14, p. 37

    Article  Google Scholar 

  5. B.R. Chen, J.R. Griffiths, Y.C. Lam: Eng. Fract. Mech., 1993, vol. 44, p. 567

    Article  Google Scholar 

  6. R.N. Ibrahim, Y.C. Lam: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17 (3), p. 277

    Article  Google Scholar 

  7. R.N. Ibrahim: Eng. Fract. Mech., 1998, vol. 59 (2), p. 215

    Article  Google Scholar 

  8. R.N. Ibrahim, D. Ischenko: J. Eng. Mater. Technol., 1998, vol. 120, p. 297

    Article  CAS  Google Scholar 

  9. J. Sedriks: Publications of National Association of Corrosion Engineers, NACE, Houston, TX, 1990

    Google Scholar 

  10. Proc. Environment-Sensitive Fracture, Symp. ASTM Committee G-1, ASTM Special Technical Publication 821, S.W. Dean, E.N. Pugh, and G.M. Ugiansky, eds., ASTM, Philadelphia, PA, 1982

  11. R.K. Singh Raman, R. Rihan, R.N. Ibrahim: Metall. Mater. Trans. A, 2006, vol. 37A, p. 2963

    Article  Google Scholar 

  12. R.K. Singh Raman: Metall. Mater. Trans. A, 2005, vol. 36A, p. 1817

    Article  Google Scholar 

  13. R. Rihan, R.K. Singh Raman, R.N. Ibrahim: Mater. Sci. Eng. A, 2006, vol. 425, p. 272

    Article  Google Scholar 

  14. R.N. Ibrahim, H.L. Stark: Eng. Fract. Mech., 1986, vol. 25 (4), pp. 395–401

    Article  Google Scholar 

  15. R.N. Ibrahim, H.L. Stark: Int. J. Fract., 1990, vol. 44, pp. 179–88

    Google Scholar 

  16. R.N. Ibrahim, H.L. Stark: Eng Fract. Mech., 1987, vol. 28 (4), pp. 455–60

    Article  Google Scholar 

  17. H.L. Stark, R.N. Ibrahim: Eng. Fract. Mech., 1988, vol. 30, p. 409

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of a project funded under the Discovery grant scheme of the Australian Research Council (ARC). The authors are grateful for the support of the ARC and the Monash University Department of Mechanical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.K. Singh Raman.

Additional information

Manuscript submitted December 17, 2007.

Appendix

Appendix

In order to account for the eccentricity, the specific method used for the determination of the centroid of the ligament was as follows.

The fatigue crack depth (a f ) was measured at twelve 30 deg intervals, as shown in Figure 12, by using a profile projector. The area of the ligament that associates with each 30 deg wedge is

$$ A_{{W_{i} }} = \frac{\pi } {{12}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{2} $$
(a)

where a m is the depth of the machined notch (m).

The total area of the ligament is

$$ A = {\sum\limits_{i = 1}^{i = 12} {\frac{\pi } {{12}}} }{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{2} $$
(b)

Therefore, the equivalent ligament diameter is

$$ d = {\sqrt {\frac{{4A}} {\pi }} } $$
(c)

The first moments of area of a 30 deg wedge about the X and Y axes, respectively, are

$$ M_{{X_{i} }} = \frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \sin \theta $$
(d)
$$ M_{{Y_{i} }} = \frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \cos \theta $$
(e)

The total moments of area of the 12 wedges about the X and Y axes are

$$ M_{X} = {\sum\limits_{i = 1}^{i = 12} {{\left( {\frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \sin \theta } \right)}} } $$
(f)
$$ M_{Y} = {\sum\limits_{i = 1}^{i = 12} {{\left( {\frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \cos \theta } \right)}} } $$
(g)

Then, dividing these moments of area (Eqs. [f] and [g]) by the ligament area (Eq. [b]) gives the coordinates of the centroid of the ligament (Figure 5).

$$ \overline{X} = \frac{{{\sum\limits_{i = 1}^{i = 12} {{\left( {\frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \sin \theta } \right)}} }}} {{{\sum\limits_{i = 1}^{i = 12} {\frac{\pi } {{12}}} }{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{2} }} $$
(h)
$$ \overline{Y} = \frac{{{\sum\limits_{i = 1}^{i = 12} {{\left( {\frac{\pi } {{18}}{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{3} \cos \theta } \right)}} }}} {{{\sum\limits_{i = 1}^{i = 12} {\frac{\pi } {{12}}} }{\left( {0.5D - a_{{f_{i} }} - a_{m} } \right)}^{2} }} $$
(i)

Therefore, the eccentricity (ε) is

$$ \varepsilon = {\sqrt {\overline{X} ^{2} + \overline{Y} ^{2} } } $$
(j)
Fig. 12
figure 12

Eccentricity (ε) of the final ligament

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Raman, R., Ibrahim, R., Wu, F. et al. Thermomechanical Manipulation of Crack-Tip Stress Field for Resistance to Stress Corrosion Crack Propagation. Metall Mater Trans A 39, 3217–3223 (2008). https://doi.org/10.1007/s11661-008-9665-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9665-4

Keywords

Navigation