Log in

Lowering the operating temperature of PEO-based solid-state lithium batteries via inorganic hybridization

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Employing the solid polymer electrolyte (SPE) instead of traditional liquid electrolyte is an effective way to develop high safety and high-energy density solid-state lithium batteries. Herein, for the first time, the Ni3B2O3 (NBO) nanorods are incorporated into polyethylene oxide (PEO)-based SPE. Particularly, the optimized NBO-embedded SPE shows a high ionic conductivity of 8.5 × 10−5 S cm−1 at 30 °C, lowering the operating temperature of PEO-based SPE substantially. The corresponding LiFePO4/Li battery demonstrates a high discharge capacity of 154 mAh g−1 after 80 cycles at 0.2 C under 30 °C, with favorable capacity retention of 97.5%. The remarkable properties are attributed to the high ionic conductivity of modified SPE at ambient temperature, which is resulted from the decreased crystallinity and melting transition point, increased movement of PEO chain, and promotion of lithium salt dissociation, as well as the formation of the lithium ion migrating pathway on the interface between PEO and NBO nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. **a S, Wu X, Zhang Z, Cui Y, Liu W (2019) Chem 5:753–785

    Article  CAS  Google Scholar 

  2. Janek J, Zeier WG (2016) Nat Energy 1:1–4

    Article  Google Scholar 

  3. Li M, Lu J, Chen Z, Amine K (2018) Adv Mater 30:1800561

    Article  Google Scholar 

  4. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Nano Energy 33:363–386

    Article  CAS  Google Scholar 

  5. Shoji, M., Cheng, E. J., Kimura, T. & Kanamura, K. J. of Ph. D: Appl. Phys. 52 (2019) 103001.

  6. Miura A et al (2019) Nat Rev Chem 3:189–198

    Article  CAS  Google Scholar 

  7. Jiang Y et al (2018) Polymers 10:1237

    Article  PubMed Central  Google Scholar 

  8. Liu, X., Li, X., Li, H. & Wu, H. B. Chemistry–A European Journal 24 (2018) 18293–18306.

  9. Xu L et al (2018) Joule 2:1991–2015

    Article  CAS  Google Scholar 

  10. Cheng X-B, Zhao C-Z, Yao Y-X, Liu H, Zhang Q (2019) Chem 5:74–96

    Article  CAS  Google Scholar 

  11. Fan L, Wei S, Li S, Li Q, Lu Y (2018) Adv Energy Mater 8:1702657

    Article  Google Scholar 

  12. Kotobuki, M. Polymer electrolytes. polymer electrolytes: characterization techniques and energy applications, Weinheim, Germany (2020).

  13. Weston J, Steele B (1982) Solid State Ionics 7:75–79

    Article  CAS  Google Scholar 

  14. Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  15. Zhu Y, Cao J, Chen H, Yu Q, Li B (2019) J of Mater Chem A 7:6832–6839

    Article  CAS  Google Scholar 

  16. Lin D et al (2016) Nano Lett 16:459–465

    Article  CAS  PubMed  Google Scholar 

  17. Yu J et al (2019) Small 15:1902729

    Article  CAS  Google Scholar 

  18. Croce F, Settimi L, Scrosati B (2006) Electrochem Comm 8:364–368

    Article  CAS  Google Scholar 

  19. Reddy MJ, Chu PP, Kumar JS, Rao US (2006) J Power Sources 161:535–540

    Article  CAS  Google Scholar 

  20. Li Y et al (2020) J of Mater Chem A 8:2021–2032

    Article  CAS  Google Scholar 

  21. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Solid State Ionics 156:393–399

    Article  CAS  Google Scholar 

  22. Sun H, Takeda Y, Imanishi N, Yamamoto O, Sohn HJ (2000) J Electrochem Soc 147:2462–2467

    Article  CAS  Google Scholar 

  23. Yuan C et al (2013) J Power Sources 240:653–658

    Article  CAS  Google Scholar 

  24. Suriyakumar S et al (2016) RSC Adv 6:97180–97186

    Article  CAS  Google Scholar 

  25. Zhang Z et al (2020) ChemElectroChem 7(1):125–1134

    Google Scholar 

  26. Li S et al (2020) Adv Sci 7:1903088

    Article  CAS  Google Scholar 

  27. Liu W, Lin D, Sun J, Zhou G, Cui Y (2016) ACS Nano 10:11407–11413

    Article  CAS  PubMed  Google Scholar 

  28. Liu W et al (2017) Nat Energy 2:1–7

    CAS  Google Scholar 

  29. Sheng O et al (2018) Nano Lett 18:3104–3112

    Article  CAS  PubMed  Google Scholar 

  30. Effenberger H, Pertlik F (1984) ZEITSCHRIFT FUR KRISTALLOGRAPHIE 166:129–140

    CAS  Google Scholar 

  31. Pang H, Lu QY, Chen CY, Liu XR, Gao F (2011) J Mater Chem 21:13889–13894

    Article  CAS  Google Scholar 

  32. Chen AM, Hu FC, Gu P, Ni ZM (2011) Chin J Inorg Chem 27:30–34

    Google Scholar 

  33. Zhang H et al (2014) Electrochim Acta 133:529–538

    Article  CAS  Google Scholar 

  34. Molinari N, Mailoa JP, Kozinsky B (2018) Chem Mater 30:6298–6306

    Article  CAS  Google Scholar 

  35. Zheng J, Hu Y-Y (2018) ACS Appl Mater Inter 10:4113–4120

    Article  CAS  Google Scholar 

  36. Zhou D, Mei X, Ouyang J (2011) J Phys Chem C 115:16688–16694

    Article  CAS  Google Scholar 

  37. Xue Z, He D, **e XJ (2015) Mater Chem A 3:19218–19253

    Article  CAS  Google Scholar 

  38. Klongkan S, Pumchusak J (2015) Electrochim Acta 161:171–176

    Article  CAS  Google Scholar 

  39. Masoud E, El-Bellihi A-A, Bayoumy W, Mousa M (2013) Mater Res Bull 48:1148–1154

    Article  CAS  Google Scholar 

  40. Tikekar MD, Archer LA, Koch DL (2016) Sci Adv 2:15

    Article  Google Scholar 

  41. Wang C et al (2017) ACS Appl Mater Inter 9:13694–13702

    Article  CAS  Google Scholar 

  42. Liu W et al (2015) Nano Lett 15:2740–2745

    Article  CAS  PubMed  Google Scholar 

  43. Lin Y, Wang X, Liu J, Miller JD (2017) Nano Energy 31:478–485

    Article  CAS  Google Scholar 

  44. Wen SJ et al (1996) J Electroanal Chem 408:113–118

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [51804344, 51704332], the Natural Science Foundation for Distinguished Young Scholars of Hunan Province [2020JJ2047], the Program of Huxiang Young Talents [2019RS2002], and the Innovation-Driven Project of Central South University [ 2020CX027]. Dr. J. Wang also appreciated the support from Furong Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nhai Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 917 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Wu, Y., Li, X. et al. Lowering the operating temperature of PEO-based solid-state lithium batteries via inorganic hybridization. Ionics 28, 779–788 (2022). https://doi.org/10.1007/s11581-021-04291-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04291-8

Keywords

Navigation