Log in

Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

As a type of a conjugate polymer with a reversible oxidizing-reducing property, polyimide is considered a representative polymer material for use as electrodes in lithium-ion batteries. Pyromellitic dianhydride is polymerized to form polyimide for use as an anode material in a lithium-ion battery, and its electrochemical and thermal properties are investigated. The first discharge capacity of the as-synthesized polyimide electrode material is 1520 mAh g−1, the charge capacity is 832 mAh g−1, and the discharge and charge capacities after 50 cycles are 587 mAh g−1 and 573 mAh g−1, respectively. In addition, the thermal behavior of the PI polymer electrode material is investigated by differential scanning calorimetry (DSC) measurements and compared with that of the graphite anode material. Under the same lithium intercalation condition, the heat release of polyimide and graphite are 242 J g−1 and 658 J g−1, respectively. Experimental results reveal that polyimide exhibits superior thermal properties than those observed at the graphite electrode at least in the initial cycle in lithium-ion batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim W-S, Choi J, Hong S-H (2016) Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res 9:2174–2181

    Article  CAS  Google Scholar 

  2. Li N, Liu Z, Gao Q, Li X, Wang R, Yan X, Li Y (2017) In situ synthesis of concentric C@MoS2 core–shell nanospheres as anode for lithium ion battery. J Mater Sci 52:13183–13191

    Article  CAS  Google Scholar 

  3. Melot BC, Tarascon JM (2013) Design and preparation of materials for advanced electrochemical storage. Acc Chem Res 46:1226–1238

    Article  CAS  Google Scholar 

  4. Yang M, Du C, Tang Z, Wu J, Zhang X (2014) Synthesis of LiCoPO4 as a cathode material for lithium-ion battery by a polymer method. Ionics 20:1039–1046

    Article  CAS  Google Scholar 

  5. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries†. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  6. Hu D-X, Wang L, Gu D-M, Wang Z-B (2017) Hierarchical Mn1.5Co1.5O4 microspheres constructed from one-dimensional nanorods as high-performance anode material for lithium-ion battery. Ionics 23:1067–1074

    Article  CAS  Google Scholar 

  7. Tarascon J-M (2010) Is lithium the new gold? Nat Chem 2:510–510

    Article  CAS  Google Scholar 

  8. Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, Goodenough JB (2011) Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy environ. Sci. 4:269–284

    CAS  Google Scholar 

  9. Li S, Mao J (2018) The influence of different types of graphene on the lithium titanate anode materials of a lithium ion battery. J Electron Mater 47:5410–5416

    Article  CAS  Google Scholar 

  10. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257:421–443

    Article  CAS  Google Scholar 

  11. Lian X, Cai M, Qin L, Cao Y, Wu Q-H (2016) Synthesis of hierarchical nanospheres Fe2O3/graphene composite and its application in lithium-ion battery as a high-performance anode material. Ionics 22:2015–2020

    Article  CAS  Google Scholar 

  12. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  13. Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4−Graphene hybrid as a high-capacity anode material for Lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  14. Zhou Z, **e W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215

    Article  CAS  Google Scholar 

  15. Song T, Yan M, Qian M (2015) A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. J Porous Mater 22:713–719

    Article  CAS  Google Scholar 

  16. He M, Kravchyk K, Walter M, Kovalenko MV (2014) Monodisperse antimony Nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 14:1255–1262

    Article  CAS  Google Scholar 

  17. Wu M, Wang C, Chen J, Wang F, Yi B (2013) Sn/carbon nanotube composite anode with improved cycle performance for lithium-ion battery. Ionics 19:1341–1347

    Article  CAS  Google Scholar 

  18. Zhao J, Kang T, Chu Y, Chen P, ** F, Shen Y, Chen L (2019) A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano Res 12:1355–1360

    Article  CAS  Google Scholar 

  19. Liang Y, Tao Z, Chen J (2012) Organic electrode materials for rechargeable Lithium batteries. Adv Energy Mater 2:742–769

    Article  CAS  Google Scholar 

  20. Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114:11444–11502

    Article  CAS  Google Scholar 

  21. Song Z, Zhou H (2013) Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ Sci 6:2280

    Article  CAS  Google Scholar 

  22. Wu J, Rui X, Long G, Chen W, Yan Q, Zhang Q (2015) Pushing up Lithium storage through nanostructured polyazaacene analogues as anode. Angew Chem Int Ed 54:7354–7358

    Article  CAS  Google Scholar 

  23. Zhang C, He Y, Mu P, Wang X, He Q, Chen Y, Zeng J, Wang F, Xu Y, Jiang J-X (2018) Toward high performance thiophene-containing conjugated microporous polymer anodes for Lithium-ion batteries through structure design. Adv Funct Mater 28:1705432

    Article  Google Scholar 

  24. **e J, Wang Z, Xu ZJ, Zhang Q (2018) Toward a High-Performance All-Plastic Full Battery with a'Single Organic Polymer as Both Cathode and Anode. Adv Energy Mater 8:1703509

    Article  Google Scholar 

  25. Yamaki J-I, Takatsuji H, Kawamura T, Egashira M (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ionics 148:241–245

    Article  CAS  Google Scholar 

  26. Biensan P, Simon B, Pérès JP, De Guibert A, Broussely M, Bodet JM, Perton F (1999) On safety of lithium-ion cells. J. Power Sources 81-82:906–912

    Article  CAS  Google Scholar 

  27. Hassoun J, Panero S, Reale P, Scrosati B (2009) A new, safe, high-rate and high-energy polymer Lithium-ion battery. Adv Mater 21:4807–4810

    Article  CAS  Google Scholar 

  28. Pasquier AD (1998) Differential scanning Calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. J Electrochem Soc 145:472

    Article  Google Scholar 

  29. Zhang Z, Fouchard D, Rea JR (1998) Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J. Power Sources 70:16–20

    Article  CAS  Google Scholar 

  30. Song Z, Zhan H, Zhou Y (2010) Polyimides: promising energy-storage materials. Angew Chem Int Ed 49:8444–8448

    Article  CAS  Google Scholar 

  31. Wu HP, Yang Q, Meng QH, Ahmad A, Zhang M, Zhu LY, Liu YG, Wei ZX (2016) A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries. J Mater Chem A 4:2115–2121

    Article  CAS  Google Scholar 

  32. Wu J, Rui X, Wang C, Pei W-B, Lau R, Yan Q, Zhang Q (2015) Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High-Capacity. Adv Energy Mater 5:1402189

    Article  Google Scholar 

  33. Han X, Chang C, Yuan L, Sun T, Sun J (2007) Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv Mater 19:1616–1621

    Article  CAS  Google Scholar 

  34. Patil A, Patil V, Wook Shin D, Choi J-W, Paik D-S, Yoon S-J (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942

    Article  CAS  Google Scholar 

  35. Edström K, Andersson AM, Bishop A, Fransson L, Lindgren J, Hussénius A (2001) Carbon electrode morphology and thermal stability of the passivation layer. J. Power Sources 97-98:87–91

    Article  Google Scholar 

  36. Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I Experimental J Electrochem Soc 146:2068–2077

    Article  CAS  Google Scholar 

  37. Han X, Qing G, Sun J, Sun T (2012) How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew Chem Int Ed 51:5147–5151

    Article  CAS  Google Scholar 

  38. Wang Y, Dahn JR (2006) Comparison of the reactions between LixSi or Li0.81C6 and nonaqueous solvent or electrolytes at elevated temperature. J Electrochem Soc 153:A2188

    Article  CAS  Google Scholar 

  39. Wang Y, Dahn JR (2006) Comparison of the reaction of LixSi or Li0.81C6 with 1 M LiPF6 EC:DEC electrolyte at high temperature. Electrochem Solid-State Lett 9:A340

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the National Natural Science Foundations of China (No. 21473128) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadong Wang or Huijuan Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Liao, Y., Hu, Q. et al. Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior. Ionics 26, 3343–3350 (2020). https://doi.org/10.1007/s11581-020-03509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03509-5

Keywords

Navigation