Log in

Hierarchical Mn1.5Co1.5O4 microspheres constructed from one-dimensional nanorods as high-performance anode material for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mn1.5Co1.5O4 hierarchical microspheres have been successfully synthesized via a solvothermal method and an annealing procedure. Mn1.5Co1.5O4 exhibits advanced cycling performance, and it retains a reversible capacity of 633 mA h g−1 at a current density of 400 mA g−1 with a coulombic efficiency of 99.0% after 220 cycles. Its remarkable performance is attributed to the hierarchical structure assembled with nanorods, which increases the contact area between each nanorod and electrolyte. More significantly, the open space between neighboring nanorods and the pores on the surface of nanorods can improve Li+ ion diffusion rate. Furthermore, the nanorods have rapid one-dimensional Li+ diffusion channels, which not only possess a large specific surface area for high activity but accommodate the volume change during lithiation–delithiation processes. Therefore, Mn1.5Co1.5O4 hierarchical microspheres can act as a promising alternative anode material for lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun CC, Yang J, Dai ZY, Wang XW, Zhang YF, Li LQ, Chen P, Huang W, Dong XC (2016a) Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res 9:1300–1309

    Article  CAS  Google Scholar 

  2. Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:785

    Article  CAS  Google Scholar 

  3. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery. A perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  5. Ryu WH, Lim SJ, Kim WK, Kwon HS (2014) 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J Power Sources 257:186–191

    Article  CAS  Google Scholar 

  6. Shi SJ, Lou ZR, **a TF, Wang XL, CD G, JP T (2014) Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J Power Sources 257:198–204

    Article  CAS  Google Scholar 

  7. Fu F, GL X, Wang Q, Deng YP, Li X, Li JT, Huang L, Sun SG (2013) Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. J Mater Chem A 1:3860–3864

    Article  CAS  Google Scholar 

  8. Wang L, Wang ZB, FD Y, Liu BS, Zhang Y, Zhou YX (2016a) Investigation on performances of Li1.2Co0.4Mn0.4O2 prepared by self-combustion reaction as stable cathode for lithium-ion batteries. Ceram Int 42:14818–14825

    Article  CAS  Google Scholar 

  9. Tan G, Wu F, Yuan Y, Chen R, Zhao T, Yao Y, Qian J, Liu JR, Ye Y, Shahbazian-Yassar R, Lu J, Amine K (2016) Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes. Nat Commun 7:11774–11773

    Article  CAS  Google Scholar 

  10. Wu F, Wang Z, YF S, Guan YB, ** Y, Yan N, Tian J, Bao L, Chen S (2014) Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J Power Sources 267:337–346

    Article  CAS  Google Scholar 

  11. Hu L, Zhong H, Zheng XR, Huang YM, Zhang P, Chen QW (2012) CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2:986

    Google Scholar 

  12. Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Enery environ 4:2682–2699

    Article  CAS  Google Scholar 

  13. Reddy MV, Subba Rao GV, Chowdari BV (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  14. Zhao Y, Li XF, Yan B, **ong DB, Li DJ, Lawes S, Sun XL (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175–1502193

    Article  Google Scholar 

  15. Kang WP, Tang YB, Li WY, Li ZP, Yang X, Xu J, Lee CS (2014) Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale 6:6551–6556

    Article  CAS  Google Scholar 

  16. Deng YF, Zhang QM, Tang SD, Zhang LT, Deng SN, Shi ZC, Chen GH (2011) One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem Commun 47:6828–6830

    Article  CAS  Google Scholar 

  17. Habjanič J, Jurić M, Popović J, Molčanov K, Pajić D (2014) A 3D oxalate-based network as a precursor for the CoMn2O4 spinel: synthesis and structural and magnetic studies. Inorg Chem 53:9633–9643

    Article  Google Scholar 

  18. Wang LJ, Liu B, Ran SH, Wang LM, Gao LN, FY Q, Chen D, Shen GZ (2013) Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J Mater Chem A 1:2139–2143

    Article  CAS  Google Scholar 

  19. Li JF, Wang JZ, Liang X, Zhang ZJ, Liu HK, Qian YT, **ong SL (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Acs Appl Mater Inter 6:24–30

    Article  Google Scholar 

  20. Zhang G, Yu L, HB W, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613

    Article  CAS  Google Scholar 

  21. Zhang LX, Wang YL, Jiu HF, Qiu HY, Wang HY (2015a) Hollow core–shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries. Ceram Int 41:9655–9661

    Article  CAS  Google Scholar 

  22. Luo W, XL H, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921

    Article  CAS  Google Scholar 

  23. Zhou L, Zhao DY, Lou XW (2012a) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748

    Article  CAS  Google Scholar 

  24. Zhou L, HB W, Zhu T, Lou XW (2012b) Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22:827–829

    Article  CAS  Google Scholar 

  25. Li JF, **ong SL, Li XW, Qian YT (2012) Spinel Mn1.5Co1.5O4 core-shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. J Mater Chem 22:23254–23259

    Article  CAS  Google Scholar 

  26. Jiang XC, Wang YL, Herricks T, **a YN (2004) Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14:695–703

    Article  CAS  Google Scholar 

  27. Cao AM, JS H, Liang HP, Song WG, Wan LJ, He XL, Gao XG, **a SH (2006) Hierarchically structured cobalt oxide Co3O4: the morphology control and its potential in sensors. J Phys Chem B 110:15858–15863

    Article  CAS  Google Scholar 

  28. Zhang LX, He GF, Lei SW, Qi GS, Jiu HF, Wang J (2016) Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery. J Power Sources 326:505–513

    Article  CAS  Google Scholar 

  29. Wei WF, Chen WX, Ivey DG (2007) Anodic electrodeposition of nanocrystalline coatings in the Mn–Co–O system. Chem Mater 19:2816–2822

    Article  CAS  Google Scholar 

  30. Li B, Li SM, Xu JJ, Yang SB (2016) A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances. Energ Environ 9:2025–2030

    Article  CAS  Google Scholar 

  31. Yuan CZ, Zhang LH, Zhu SQ, Cao H, Lin JD, Hou LR (2015) Heterostructured core–shell ZnMn2O4 nanosheets@carbon nanotubes’ coaxial nanocables: a competitive anode towards high-performance Li-ion batteries. Nanotechnology 26:145401

    Article  Google Scholar 

  32. GT F, Liu ZY, Zhang JF, JY W, Xu L, Sun DM, Zhang JB, Tang YW, Chen P (2016) Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res 9:2110–2122

    Article  Google Scholar 

  33. Zhang LX, Wang YL, Jiu HF, Zheng WH, Chang JX, He GF (2015b) Controllable synthesis of spinel nano-CoMn2O4 via a solvothermal carbon templating method and its application in lithium ion batteries. Electrochim Acta 182:550–558

    Article  CAS  Google Scholar 

  34. Lee J, Zhu HZ, Yadav GG, Caruthers J, Wu Y (2016) Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res 9:6–1004

    Article  Google Scholar 

  35. Quan JB, Mei L, Ma Z, Huang JC, Li DC (2016) Cu1.5Mn1.5O4 spinel: a novel anode material for lithium-ion batteries. RSC Adv 6:55786–55791

    Article  CAS  Google Scholar 

  36. Sun SJ, Zhao XY, Yang M, LL W, Wen ZY, Shen XD (2016b) Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries. Sci Rep 6:19564

    Article  CAS  Google Scholar 

  37. Meng JS, Niu CJ, Liu X, Liu ZA, Chen HL, Wang XP, Li JT, Chen W, Guo XF, Mai LQ (2016) Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Res 9:2445–2457

    Article  CAS  Google Scholar 

  38. Mondal AK, Liu H, **e XQ, Kretschmer K, Wang GX (2016) Hydrothermal synthesis of multiwalled carbon nanotube-zinc manganate nanoparticles as anode materials for lithium ion batteries. Chempluschem 81:399–405

    Article  CAS  Google Scholar 

  39. Wang XC, Jia W, Wang LX, Huang YD, Guo Y, Sun Y, Jia DZ, Pang WK, Guo ZP, Tang XC (2016b) Facile in-situ synthesis of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium-ion batteries. J Mater Chem A 4:13907–13915

    Article  CAS  Google Scholar 

  40. Yan CS, Chen G, Zhou X, Sun JX, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436

    Article  CAS  Google Scholar 

  41. Yang GR, Xu X, Yan W, Yang H, Ding SJ (2014a) Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim Acta 137:462–469

    Article  CAS  Google Scholar 

  42. Yang ZH, JB L, Bian DC, Zhang WX, Yang XN, **a JF, Chen GD, HY G, Ma G (2014b) Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries. J Power Sources 272:144–151

    Article  CAS  Google Scholar 

  43. Que LF, Wang ZB, FD Y, DM G (2016) 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. J Mater Chem A 4:8716–8723

    Article  CAS  Google Scholar 

  44. Li Z, Du F, Bie XF, Zhang D, Cai YM, Cui XR, Wang CZ, Chen G, Wei YJ (2013) Electrochemical kinetics of the Li Li0.23Co0.3Mn0.47 O2 cathode material studied by GITT and EIS. J Phys Chem C 114:22751–22757

    Article  Google Scholar 

  45. Bai YS, Wang XY, Zhang XY, Shu HB, Yang XK, BN H, Wei QL, Wu H, Song YF (2013) The kinetics of Li-ion deintercalation in the Li-rich layered Li1.12[Ni0.5Co0.2Mn0.3]0.89O2 studied by electrochemical impedance spectroscopy and galvanostatic intermittent titration technique. Electrochim Acta 109:355–364

    Article  CAS  Google Scholar 

  46. Mai YJ, Zhang D, Qiao YQ, CD G, Wang XL, JP T (2012) MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance. J Power Sources 216:201–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant no. 21273058), China Postdoctoral Science Foundation (grant no. 2012M520731 and 2014M70350), Heilongjiang Postdoctoral Financial Assistance (LBH-Z12089), and Harbin Technological Achievements Transformation Projects (2016DB4AG023) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, DX., Wang, L., Gu, DM. et al. Hierarchical Mn1.5Co1.5O4 microspheres constructed from one-dimensional nanorods as high-performance anode material for lithium-ion battery. Ionics 23, 1067–1074 (2017). https://doi.org/10.1007/s11581-016-1928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1928-2

Keywords

Navigation