Log in

Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers \(R_0\) for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Code Availability

The source code for the numerical analysis performed in this paper can be found in https://github.com/JimmyCalvoMonge/pycnopodia.

Notes

  1. Indeed, in equation \(ax^2+bx+c=0,\) where \(a,b,c>0\), then one possible root has numerator \(-b-\sqrt{b^2-4ac}\) which is negative, and the other has numerator \(-b+\sqrt{b^2-4ac}\) which is also negative: \(-b+ \sqrt{b^2-4ac}<0 \Leftrightarrow \sqrt{b^2-4ac}< b \Leftrightarrow b^2 - 4ac< b^2 \Leftrightarrow 0 <4ac.\)

  2. When \(R_{0,1}<1\) we saw, previously, that the disease-free equilibrium is stable.

References

  • Aalto EA, Lafferty KD, Sokolow SH, Grewelle RE, Ben-Horin T, Boch CA, Raimondi PT, Bograd SJ, Hazen EL, Jacox MG, Micheli F, De Leo GA (2020) Models with environmental drivers offer a plausible mechanism for the rapid spread of infectious disease outbreaks in marine organisms. Sci Rep 10(1):5975

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature 280(5721):361–367

    Article  Google Scholar 

  • Arino J, Sun C, Yang W (2016) Revisiting a two-patch SIS model with infection during transport. Math Med Biol 33(1):29–55. https://doi.org/10.1093/imammb/dqv001

    Article  MathSciNet  Google Scholar 

  • Arroyo-Esquivel J, Adams R, Gravem S, Whippo R, Randell Z, Hodin J, Galloway A, Gaylord B, Baskett ML. Multiple resiliency metrics reveal the complementary roles of different restoration interventions on long-term system persistence multiple resiliency metrics reveal the complementary roles of different restoration interventions on long-term system persistence. Under Review

  • Berger L, Speare R, Hines H, Marantelli G, Hyatt A, McDonald K, Skerratt L, Olsen V, Clarke J, Gillespie G, Mahony M, Sheppard N, Williams C, Tyler M (2008) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J 82(7):434–439. https://doi.org/10.1111/j.1751-0813.2004.tb11137.x

    Article  Google Scholar 

  • Blooi M, Laking AE, Martel A, Haesebrouck F, Jocque M, Brown T, Green S, Vences M, Bletz MC, Pasmans F (2017) Host niche may determine disease-driven extinction risk. PLoS ONE 12(7):0181051

    Article  Google Scholar 

  • Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM (2021) Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 24(1):130–148

    Article  Google Scholar 

  • Briggs CJ, Vredenburg VT, Knapp RA, Rachowicz LJ (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology 86(12):3149–3159

    Article  Google Scholar 

  • Calvo JG, Hernández A, Porter MA, Sanchez F (2020) A two-patch epidemic model with nonlinear reinfection. Rev. Mat. 27(1):23–48. https://doi.org/10.15517/rmta.v27i1.39946

    Article  MathSciNet  Google Scholar 

  • Caraco T, Glavanakov S, Chen G, Flaherty JE, Ohsumi TK, Szymanski BK (2002) Stage-structured infection transmission and a spatial epidemic: a model for lyme disease. Am Nat 160(3):348–359. https://doi.org/10.1086/341518

    Article  Google Scholar 

  • Castillo-Chavez C, Bichara D, Morin BR (2016) Perspectives on the role of mobility, behavior, and time scales in the spread of diseases. Proc Natl Acad Sci USA 113(51):14582–14588

    Article  Google Scholar 

  • Castillo-Garsow CW, Castillo-Chavez C (2020) A tour of the basic reproductive number and the next generation of researchers. In: Highlander HC, Capaldi A, Diaz Eaton C (eds) An introduction to undergraduate research in computational and mathematical biology. Springer, New York, pp 87–124

    Chapter  Google Scholar 

  • De Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8(1):117–126

    Article  Google Scholar 

  • DiRenzo GV, Zipkin EF, Grant EHC, Royle JA, Longo AV, Zamudio KR, Lips KR (2018) Eco-evolutionary rescue promotes host-pathogen coexistence. Ecol Appl 28(8):1948–1962

    Article  Google Scholar 

  • Dwyer G (1991) The roles of density, stage, and patchiness in the transmission of an insect virus. Ecology 72(2):559–574

    Article  Google Scholar 

  • Galloway AWE, Gravem SA, Kobelt JN, Heady WN, Okamoto DK, Sivitilli DM, Saccomanno VR, Hodin J, Whippo R (2023) Sunflower sea star predation on urchins can facilitate kelp forest recovery. Proc Biol Sci 290(1993):20221897

    Google Scholar 

  • Golas BD, Goodell B, Webb CT (2021) Host adaptation to novel pathogen introduction: predicting conditions that promote evolutionary rescue. Ecol Lett 24(10):2238–2255

    Article  Google Scholar 

  • Hamilton SL, Saccomanno VR, Heady WN, Gehman AL, Lonhart SI, Beas-Luna R, Francis FT, Lee L, Rogers-Bennett L, Salomon AK, Gravem SA (2021) Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern pacific. Proc Biol Sci 288(1957):20211195

    Google Scholar 

  • Harvell CD, Montecino-Latorre D, Caldwell JM, Burt JM, Bosley K, Keller A, Heron SF, Salomon AK, Lee L, Pontier O, Pattengill-Semmens C, Gaydos JK (2019) Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (pycnopodia helianthoides). Sci Adv 5(1):7042

    Article  Google Scholar 

  • Heady WN, Beas-Luna R, Dawson MN, Eddy NE, Elsmore K, Francis FT, Frierson TN, Gehman A-LM, Gotthardt T, Gravem SA, Grebel J, Hamilton SL, Hannah L, Harvell CD, Hodin J, Kelmartin I, Krenz C, Lee LC, Lorda J, Lowry D, Mastrup S, Meyer E, Raimondi PT, Rumrill SS, Saccamonno VR, Schiebelhut LM, Siddon C (2022) Roadmap to recovery for the sunflower sea star (Pycnopodia helianthoides) along the west coast of North America. Technical report, The Nature Conservancy, Sacramento, CA

  • Heard GW, Thomas CD, Hodgson JA, Scroggie MP, Ramsey DSL, Clemann N (2015) Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol Lett 18(8):853–863

    Article  Google Scholar 

  • Hewson I, Button JB, Gudenkauf BM, Miner BG, Newton AL, Gaydos JK, Wynne J, Groves CL, Hendler G, Murray M, Fradkin S, Breitbart M, Fahsbender E, Lafferty KD, Kilpatrick AM, Miner MC, Raimondi P, Lahner L, Friedman CS, Daniels S, Haulena M, Marliave J, Burge CA, Eisenlord ME, Harvell CD (2014) Densovirus associated with sea-star wasting disease and mass mortality. Proc Natl Acad Sci 111(48):17278–17283. https://doi.org/10.1073/pnas.1416625111

    Article  Google Scholar 

  • Hite JL, Roos AM (2023) Pathogens stabilize or destabilize depending on host stage structure. Math Biosci Eng 20(12):20378–20404

    Article  MathSciNet  Google Scholar 

  • Hite JL, Penczykowski RM, Shocket MS, Strauss AT, Orlando PA, Duffy MA, Cáceres CE, Hall SR (2016) Parasites destabilize host populations by shifting stage-structured interactions. Ecology 97(2):439–449

    Article  Google Scholar 

  • Hollanders M, Grogan LF, Nock CJ, McCallum HI, Newell DA (2023) Recovered frog populations coexist with endemic Batrachochytrium dendrobatidis despite load-dependent mortality. Ecol Appl 33(1):2724

    Article  Google Scholar 

  • Huang ZYX, Langevelde F, Prins HHT, Boer WF (2015) Dilution versus facilitation: impact of connectivity on disease risk in metapopulations. J Theor Biol 376:66–73

    Article  Google Scholar 

  • Jaffe N, Eberl R, Bucholz J, Cohen CS (2019) Sea star wasting disease demography and etiology in the brooding sea star Leptasterias spp. PLoS ONE 14(11):0225248

    Article  Google Scholar 

  • Jiao J, Fefferman N (2021) The dynamics of evolutionary rescue from a novel pathogen threat in a host metapopulation. Sci Rep 11(1):10932

    Article  Google Scholar 

  • Jiao J, Gilchrist MA, Fefferman NH (2020) The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob Ecol Conserv 23(e01174):01174

    Google Scholar 

  • Kang Y, Castillo-Chavez C, Levin SA (2012) A simple two-patch epidemiological model with Allee effects and disease-modified fitness. https://api.semanticscholar.org/CorpusID:14056963

  • Kay SWC, Gehman A-LM, Harley CDG (2019) Reciprocal abundance shifts of the intertidal sea stars, Evasterias troschelii and Pisaster ochraceus, following sea star wasting disease. Proc R Soc B Biol Sci 286(1901):20182766–9. https://doi.org/10.1098/rspb.2018.2766

    Article  Google Scholar 

  • Lachish S, McCallum H, Mann D, Pukk CE, Jones ME (2010) Evaluation of selective culling of infected individuals to control tasmanian devil facial tumor disease. Conserv Biol 24(3):841–851. https://doi.org/10.1111/j.1523-1739.2009.01429.x

    Article  Google Scholar 

  • Largier JL (2003) Considerations in estimating larval dispersal distances from oceanographic data. Ecol Appl 13(sp1):71–89. https://doi.org/10.1890/1051-0761(2003)013[0071:cieldd]2.0.co;2

    Article  Google Scholar 

  • Lee S, Baek O, Melara L (2020) Resource allocation in two-patch epidemic model with state-dependent dispersal behaviors using optimal control. Processes. https://doi.org/10.3390/pr8091087

    Article  Google Scholar 

  • Li Z, Wang Q, Sun K, Feng J (2021) Prevalence of batrachochytrium dendrobatidis in amphibians from 2000 to 2021: a global systematic review and meta-analysis. Front Vet Sci 8:791237

    Article  Google Scholar 

  • Lieberthal B, Gardner AM (2021) Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network. PLoS Comput Biol 17(3):1008674

    Article  Google Scholar 

  • Lowry D (2023) Endangered species act status review report: sunflower sea star (Pycnopodia helianthoides)

  • May RM, Anderson RM (1979) Population biology of infectious diseases: Part II. Nature 280(5722):455–461

    Article  Google Scholar 

  • McCallum H (2012) Disease and the dynamics of extinction. Philos Trans R Soc Lond B Biol Sci 367(1604):2828–2839

    Article  Google Scholar 

  • McCallum H, Jones M, Hawkins C, Hamede R, Lachish S, Sinn DL, Beeton N, Lazenby B (2009) Transmission dynamics of tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90(12):3379–3392. https://doi.org/10.1890/08-1763.1

    Article  Google Scholar 

  • Miner CM, Burnaford JL, Ambrose RF, Antrim L, Bohlmann H, Blanchette CA, Engle JM, Fradkin SC, Gaddam R, Harley CDG, Miner BG, Murray SN, Smith JR, Whitaker SG, Raimondi PT (2018) Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. PLoS ONE 13(3):0192870

    Article  Google Scholar 

  • Murray KA, Skerratt LF, Speare R, McCallum H (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, batrachochytrium dendrobatidis. Conserv Biol 23(5):1242–1252

    Article  Google Scholar 

  • Muths E, Scherer RD, Pilliod DS (2011) Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. J Appl Ecol 48(4):873–879

    Article  Google Scholar 

  • Palomar G, Fernández-Chacón A, Bosch J (2023) Amphibian survival compromised by long-term effects of chytrid fungus. Biodivers Conserv 32(2):793–809

    Article  Google Scholar 

  • Prentice JC, Fox NJ, Hutchings MR, White PCL, Davidson RS, Marion G (2019) When to kill a cull: factors affecting the success of culling wildlife for disease control. J R Soc Interface 16(152):20180901. https://doi.org/10.1098/rsif.2018.0901

    Article  Google Scholar 

  • Rogers-Bennett L, Catton CA (2019) Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci Rep 9(1):15050

    Article  Google Scholar 

  • Saha S, Samanta G (2022) Impact of disease on a two-patch eco-epidemic model in presence of prey dispersal. Comput Math Biophys 10(1):199–230. https://doi.org/10.1515/cmb-2022-0139

    Article  MathSciNet  Google Scholar 

  • Tewa JJ, Bowong S, Mewoli B (2012) Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis. Appl Math Model 36(6):2466–2485. https://doi.org/10.1016/j.apm.2011.09.004

    Article  MathSciNet  Google Scholar 

  • Yan DX, Zou XF (2020) Dynamics of an epidemic model with relapse over a two-patch environment. Math Biosci Eng 17(5):6098–6127. https://doi.org/10.3934/mbe.2020324

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude for the support from the Research Center in Pure and Applied Mathematics and the Department of Mathematics at the University of Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Arroyo-Esquivel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Basic Reproductive Number computations

We compute the basic reproductive number \(R_{0,i}\) for \(i=1,2\). Because calculations are analogous, we provide only the details for the first patch. We follow the next-generation matrix approach, discussed in Castillo-Garsow and Castillo-Chavez (2020).

For the first patch the transmission matrix in infected F and the transition matrix V are given by

$$\begin{aligned} F := \begin{bmatrix} \beta _1 J_{S,1} \frac{J_{I,1}+A_{I,1}}{N_1} \\ \beta _1 A_{S,1} \frac{J_{I,1}+A_{I,1}}{N_1} \end{bmatrix} \quad V := \begin{bmatrix} -\mu _I J_{I,1} \\ -\mu _I A_{I,1} \end{bmatrix}. \end{aligned}$$
(A1)

Their corresponding Jacobian matrices with respect to \(I= (J_{I,1}, A_{I,1})\) are given by

$$\begin{aligned} \mathcal {F}&= \frac{\partial F}{\partial I} = \begin{bmatrix} \beta _1 J_{S,1} \frac{J_{S,1}+ A_{S,1}}{N_1^2} &{} \beta _1 J_{S,1} \frac{J_{S,1}+ A_{S,1}}{N_1^2} \\ \beta _1 A_{S,1} \frac{J_{S,1}+ A_{S,1}}{N_1^2} &{} \beta _1 A_{S,1} \frac{J_{S,1}+ A_{S,1}}{N_1^2} \end{bmatrix} \nonumber \\ \mathcal {V}&= \frac{\partial V}{\partial I} = \begin{bmatrix} -\mu _I &{} 0 \\ 0 &{} - \mu _I \end{bmatrix}. \end{aligned}$$
(A2)

At the disease free equilibrium point we have that \(J_{S,1} + A_{S,1} = N_1\), therefore at this point we have that

$$\begin{aligned} \mathcal {F}\mathcal {V}^{-1} = \begin{bmatrix} \beta _1 \frac{J_{S,1}}{N_1} &{} \beta _1 \frac{J_{S,1}}{N_1} \\ \beta _1 \frac{A_{S,1}}{N_1} &{} \beta _1 \frac{A_{S,1}}{N_1} \end{bmatrix} \begin{bmatrix} -\mu _I &{} 0 \\ 0 &{} -\mu _I \end{bmatrix} = \begin{bmatrix} -\frac{\beta _1}{\mu _I}\frac{J_{S,1}}{N_1} &{} -\frac{\beta _1}{\mu _I}\frac{J_{S,1}}{N_1} \\ -\frac{\beta _1}{\mu _I}\frac{A{S,1}}{N_1} &{} -\frac{\beta _1}{\mu _I}\frac{A_{S,1}}{N_1} \end{bmatrix}. \end{aligned}$$
(A3)

A simple calculation using the fact that \(N_1= A_{S,1}+J_{S,1}\) gives us that the characteristic polynomial of this matrix equals \(p(\lambda ) = \lambda \left( \lambda + \frac{\beta _1}{\mu _I}\right) \). Therefore, the expectral radius \(\rho (\mathcal {F}\mathcal {V}^{-1})\) equals \(\beta _1/\mu _I\), thus providing the aforementioned formula for the basic reproductive number of the first patch. As mentioned before, the computation of \(R_{0,2}\) is completely analogous.

Appendix B First Patch Disease Free Equilibrium Jacobian Calculation

Summing the fourth row to the third and the second row to the first equals

Transposing this matrix, we must compute

(B4)

To compute determinant (A), we employ the second row.

$$\begin{aligned} (A)&= - (\mu _S + \lambda ) \left( \left( \beta _1 \frac{J_{S,1}}{N_1} - \mu _I -\lambda \right) \cdot \left( \beta _1 \frac{A_{S,1}}{N_1} - \mu _I -\lambda \right) - \beta _1 \frac{J_{S,1}}{N_1}\cdot \beta _1 \frac{A_{S,1}}{N_1} \right) \nonumber \\&= - (\mu _S + \lambda )\left( - \frac{\beta _1}{N_1}(\mu _I+ \lambda )(A_{S,1}+J_{S,1}) + (\mu _I+ \lambda )^2\right) \end{aligned}$$
(B5)

Likewise, for computing the determinant (B), we use the second row.

(B6)

Therefore, the final determinant equals

(B7)

simplifying and using \(N_1 = A_{S,1} + J_{S,1}\) at the disease-free equilibrium, this determinant is equal to

(B8)

After some algebraic manipulations, this expression is simplified to

(B9)

Note that \(B_1>0\). A condition to ensure \(C_1>0\) is \(\mu _S(\alpha + \mu _S) - \alpha pr >0\).

Appendix C First Patch Endemic Equilibrium Calculation

Using \(I_1:= J_{I,1}+A_{I,1}\) we have that

$$\begin{aligned} \dot{I_1}&= \dot{J_{I,1}} + \dot{A_{I,1}} = \beta _1J_{S,1}\frac{(J_{I,1}+A_{I,1})}{N_1}\nonumber \\&\quad -\mu _IJ_{I,1} + \beta _1A_{S,1}\frac{(J_{I,1}+A_{I,1})}{N_1}-\mu _IA_{I,1} \end{aligned}$$
(C10)
$$\begin{aligned}&=\beta _1(J_{S,1}+A_{S,1})\frac{I_1}{N_1}-\mu _I I_1 \end{aligned}$$
(C11)

We can then consider the sub-model for the first patch,

$$\begin{aligned} \begin{aligned} \dot{J_{S,1}}=&pr\left( 1- \frac{N_1}{k}\right) A_{S,1}-\beta _1J_{S,1}\frac{I_1}{N_1}-\alpha J_{S,1}-\mu _SJ_{S,1}\\ \dot{A_{S,1}}=&\alpha J_{S,1}-\beta _1A_{S,1}\frac{I_1}{N_1}-\mu _SA_{S,1}\\ \dot{I_1}=&\beta _1(J_{S,1}+A_{S,1})\frac{I_1}{N_1}-\mu _I I_1. \end{aligned} \end{aligned}$$
(C12)

We want to find an equilibrium point in this sub-model, that is, a point in which the following equations are satisfied,

$$\begin{aligned} 0= & {} pr\left( 1-\frac{N_1}{k}\right) A_{S,1}-\beta _1J_{S,1}\frac{I_1}{N_1}-\alpha J_{S,1}- \mu _SJ_{S,1},\end{aligned}$$
(C13)
$$\begin{aligned} 0= & {} \alpha J_{S,1}-\beta _1A_{S,1}\frac{I_1}{N_1}-\mu _SA_{S,1},\end{aligned}$$
(C14)
$$\begin{aligned} 0= & {} \beta _1(J_{S,1}+A_{S,1})\frac{I_1}{N_1}-\mu _I I. \end{aligned}$$
(C15)

In particular, we are interested in finding an endemic equilibrium, which is an equilibrium in which \(I_1 \ne 0\). Using Eq. (C15) and canceling \(I_1\), we obtain that

$$\begin{aligned} N_1 = \frac{\beta _1}{\mu _I}(J_{S,1} + A_{S,1}). \end{aligned}$$
(C16)

Furthermore, using (C16) we get

$$\begin{aligned} I_1 :&= N_1 - A_{S,1} - J_{S,1} \nonumber \\&= \frac{\beta _1}{\mu _I}(J_{S,1} + A_{S,1}) - (J_{S,1} + A_{S,1}) \nonumber \\&= \left[ \frac{\beta _1}{\mu _I} -1 \right] (J_{S,1} + A_{S,1}) \nonumber \\&= \frac{\beta _1 - \mu _I}{\mu _I}(J_{S,1} + A_{S,1}) \end{aligned}$$
(C17)

As \(I \ne 0\) we must have \(\beta _1 \ne \mu _I\). If we multiply Eq. (C14) by \(N_1\) and use (C16) and (C17), we obtain

$$\begin{aligned} 0&=\alpha J_{S,1}N_1-\beta _1A_{S,1}I_1-\mu _SA_{S,1}N_1 \Rightarrow \nonumber \\ 0&=\alpha J_{S,1} \cdot \frac{\beta _1}{\mu _I}(J_{S,1} + A_{S,1}) - \beta _1 A_{S,1} \cdot \frac{\beta _1 - \mu _I}{\mu _I}(J_{S,1} + A_{S,1}) \nonumber \\ {}&\quad -\mu _SA_{S,1} \cdot \frac{\beta _1}{\mu _I}(J_{S,1} + A_{S,1}) \Rightarrow \nonumber \\ 0&=(J_{S,1} + A_{S,1}) \left[ \alpha J_{S,1} \cdot \frac{\beta _1}{\mu _I} - \beta _1 A_{S,1} \cdot \frac{\beta _1 - \mu _I}{\mu _I} -\mu _SA_{S,1} \cdot \frac{\beta _1}{\mu _I}\right] \nonumber \\ {}&\Rightarrow \left( \text {{factoring} } \frac{\beta _1}{\mu _I}\right) \nonumber \\ 0&=(J_{S,1} + A_{S,1}) \biggl ( \alpha J_{S,1} - A_{S,1} (\beta _1 - \mu _I +\mu _S) \biggr ). \end{aligned}$$
(C18)

Note that \(J_{S,1}+A_{S,1} \ne 0\) because otherwise (C15) would imply \(I_1=0\). Then it follows that \(\alpha J_{S,1} = A_{S,1} (\beta _1 - \mu _I +\mu _S)\). Moreover, if we assume \(\beta _1 - \mu _I +\mu _S \ne 0\) we arrive at the equality

$$\begin{aligned} \frac{\alpha }{\beta _1 - \mu _I +\mu _S}J_{S,1} = A_{S,1}. \end{aligned}$$
(C19)

Call \(\lambda _1 := \frac{\alpha }{\beta _1 - \mu _I +\mu _S} = \frac{\alpha }{\mu _I \left( R_{0,1} + \frac{\mu _S}{\mu _I} - 1 \right) }\) and note that

$$\begin{aligned} N_1 = A_{S,1} + J_{S,1} + I_1 = \lambda _1 J_{S,I} + J_{S,1} + I_1 = (\lambda _1+1)J_{S,1} + I_1. \end{aligned}$$
(C20)

Modifying (C17) we get

$$\begin{aligned} I_1 = \frac{\beta _1 - \mu _I}{\mu _I}(J_{S,1} + A_{S,1}) = \frac{\beta _1 - \mu _I}{\mu _I}(\lambda _1+1)J_{S,1} \Rightarrow \frac{\mu _I}{\beta _1 - \mu _I} I_1 = (\lambda _1+1)J_{S,1} \end{aligned}$$
(C21)

meaning that

$$\begin{aligned} N_1 = (\lambda _1+1)J_{S,1} + I_1 = \frac{\mu _I}{\beta _1 - \mu _I} I_1 + I_1 = \frac{\beta _1}{\beta _1 - \mu _I}I_1. \end{aligned}$$
(C22)

We turn to the first equation of the model, Eq. (C13), and substitute Eq. (C19) to obtain

$$\begin{aligned} 0=pr\left( 1- \frac{N_1}{k}\right) \lambda _1 J_{S,1} -\beta _1J_{S,1}\frac{I_1}{N_1}-\alpha J_{S,1}-\mu _SJ_{S,1}. \end{aligned}$$
(C23)

Note that \(J_{S,1}=0\) would imply \(A_{S,1}\) because of (C19), which implies \(J_{S,1}+A_{S,1}=0\), an impossibility when assuming \(I_1 \ne 0\) as we commented above. Therefore we can cancel \(J_{S,1}\) in this last equation to get

$$\begin{aligned} 0=pr\lambda _1\left( 1- \frac{N_1}{k}\right) -\beta _1\frac{I_1}{N_1}-(\alpha + \mu _S). \end{aligned}$$
(C24)

If we multiply by \(N_1\), we get

$$\begin{aligned} 0=pr\lambda _1\left( 1- \frac{N_1}{k}\right) N_1 -\beta _1I-(\alpha + \mu _S)N_1. \end{aligned}$$
(C25)

Using (C22) we obtain

$$\begin{aligned} 0=pr\lambda _1\left( 1- \frac{\beta _1}{k(\beta _1 - \mu _I)}I_1\right) \frac{\beta _1}{\beta _1 - \mu _I}I_1 -\beta _1I_1-(\alpha + \mu _S)\frac{\beta _1}{\beta _1 - \mu _I}I_1. \end{aligned}$$
(C26)

As \(I_1 \ne 0\) we can cancel all \(I_1\) values and arrive to

$$\begin{aligned} 0=pr\lambda _1\left( 1- \frac{\beta _1}{k(\beta _1 - \mu _I)}I_1\right) \frac{\beta _1}{\beta _1 - \mu _I} -\beta _1-\frac{\beta _1(\alpha + \mu _S)}{\beta _1 - \mu _I}. \end{aligned}$$
(C27)

We note that \(\frac{\beta _1}{\beta _1 - \mu _I} = \frac{R_{0,1}}{R_{0,1} - 1}\), so we have that

$$\begin{aligned} 0=pr\lambda _1\left( 1- \frac{R_{0,1}}{k(R_{0,1}-1)}I_1\right) \frac{R_{0,1}}{R_{0,1} - 1}-\mu _I R_{0,1} -\frac{R_{0,1}(\alpha + \mu _S)}{R_{0,1}-1}. \end{aligned}$$
(C28)

Factoring \(I_1\) we get

$$\begin{aligned} I_1^* = \frac{k\left( R_{0,1}-1\right) }{pr\alpha R_{0,1}}\biggl (pr\alpha - \bigl (\mu _IR_{0,1} + \mu _S - \mu _I + \alpha \bigr )\bigl (\mu _I R_{0,1} + \mu _S - \mu _I\bigr )\biggr ).\nonumber \\ \end{aligned}$$
(C29)

Further normalizing with respect to \(\mu _I\), we obtain that

$$\begin{aligned} I_1^* = \frac{k\left( R_{0,1}-1\right) }{r \mathcal {R}_p \mathcal {R}_{\alpha } R_{0,1}}\biggl (r\mathcal {R}_p\mathcal {R}_{\alpha } - (R_{0,1} + \mathcal {R}_s + \mathcal {R}_{\alpha } -1)(R_{0,1} + \mathcal {R}_s -1)\biggr ),\nonumber \\ \end{aligned}$$
(C30)

where

$$\begin{aligned} \mathcal {R}_p := \frac{p}{\mu _I}, \quad \mathcal {R}_{\alpha } := \frac{\alpha }{\mu _I}, \quad \mathcal {R}_s = \frac{\mu _S}{\mu _I}. \end{aligned}$$
(C31)

We can obtain the values of \(J_{S,1}\) and \(A_{S,1}\) at the equilibrium with the previous equations. These are given by

$$\begin{aligned} J_{S,1}^*&= \frac{\mu _I}{(\beta _1 - \mu _I)(\lambda _1+1)}I_1^* = \frac{1}{(R_{0,1}-1)(\lambda _1+1)}I_1^*,\nonumber \\ A_{S,1}^*&= \frac{\mu _I\lambda _1}{(\beta _1 - \mu _I)(\lambda _1+1)}I_1^* = \frac{\lambda _1}{(R_{0,1}-1)(\lambda _1+1)}I_1^*. \end{aligned}$$
(C32)

Finally, we can return to the original model and find the values of \(J_{I,1}\) and \(A_{I,1}\) at this equilibrium. Using \(\dot{J_{S,1}}=0\) in the second Equation (1) and plugging the values of \(I_1^*, J_{S,1}^*\) and \(N_1^* = R_{\beta _1}I_1^*\) we get

$$\begin{aligned} 0&= \beta _1 \cdot \frac{\mu _IR_{\beta _1}}{\beta _1(\lambda _1+1)}I_1^* \cdot \frac{I_1^*}{R_{\beta _1} I_1^*} - \mu _I J_{I,1}^* \Rightarrow J_{I,1}^* = \frac{1}{\lambda _1+1}I_1^* \end{aligned}$$
(C33)
$$\begin{aligned}&\Rightarrow A_{I,1}^* = \frac{\lambda _1}{\lambda _1+1}I_1^*. \end{aligned}$$
(C34)

Appendix D Second Patch Disease Free Equilibrium Jacobian Calculation

By adding the term \(-\frac{(1-p)r}{k}A_{S,1}\) to each entry of the first row and transposing this matrix, we must compute

(D35)

To compute determinant (A), we employ the second row.

$$\begin{aligned} (A)&= - (\mu _S + \lambda ) \left( \left( \beta _2 \frac{J_{S,2}}{N_2} - \mu _I -\lambda \right) \cdot \left( \beta _2 \frac{A_{S,2}}{N_2} - \mu _I -\lambda \right) - \beta _2 \frac{J_{S,2}}{N_2}\cdot \beta _2 \frac{A_{S,2}}{N_2} \right) \nonumber \\&= - (\mu _S + \lambda )\left( - \frac{\beta _2}{N_2}(\mu _I+ \lambda )(A_{S,2}+J_{S,2}) + (\mu _I+ \lambda )^2\right) \end{aligned}$$
(D36)

Likewise, for computing the determinant (B), we use the second row.

(D37)

We note that by grou** the two terms \(\frac{(1-p)r}{k}A_{S,1}\) cancel out, and the final form of the determinant comes to be

(D38)

We then can follow the same logic as in the appendix B.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo-Monge, J., Arroyo-Esquivel, J., Gehman, A. et al. Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection. Bull Math Biol 86, 102 (2024). https://doi.org/10.1007/s11538-024-01328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-024-01328-7

Keywords

Navigation