Log in

Dimensional Dependence of Binding Kinetics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the context of protein–protein binding, the dissociation constant is used to describe the affinity between two proteins. For protein–protein interactions, most experimentally-measured dissociation constants are measured in solution and reported in units of volume concentration. However, many protein interactions take place on membranes. These interactions have dissociation constants with units of areal concentration, rather than volume concentration. Here, we present a novel, stochastic approach to understanding the dimensional dependence of binding kinetics. Using stochastic exit time calculations, in discrete and continuous space, we derive general reaction rates for protein–protein binding in one, two, and three dimensions and demonstrate that dimensionality greatly affects binding kinetics. Further, we present a formula to transform three-dimensional experimentally-measured dissociation constants to two-dimensional dissociation constants. This conversion can be used to mathematically model binding events that occur on membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

All relevant data are within the manuscript.

References

  • Bell GI (1978) Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 200(4342):618–627

    Article  Google Scholar 

  • Bell GI, Dembo MICAH, Bongrand PIERRE (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064

    Article  Google Scholar 

  • Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14(1):131–158

    Article  Google Scholar 

  • Dustin ML, Ferguson LM, Chan PY, Springer TA, Golan DE (1996) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132(3):465–474

    Article  Google Scholar 

  • Dustin ML, Bromley SK, Davis MM, Zhu C (2001) Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol 17(1):133–157

    Article  Google Scholar 

  • Gardiner C (2009) Stochastic methods: a handbook for the natural and social sciences. Springer, Berlin

    Google Scholar 

  • Gerecsei T, Chrenkó P, Kanyo N, Péter B, Bonyár A, Székács I, Szabo B, Horvath R (2021) Dissociation constant of integrin-RGD binding in live cells from automated micropipette and label-free optical data. Biosensors 11(2):32

    Article  Google Scholar 

  • Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C (2010) The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464(7290):932–936

    Article  Google Scholar 

  • Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45(6):463–487

    Article  Google Scholar 

  • Kostelansky MS, Sun J, Lee S, Kim J, Ghirlando R, Hierro A, Emr SD, Hurley JH (2006) Structural and functional organization of the ESCRT-I trafficking complex. Cell 125(1):113–126

    Article  Google Scholar 

  • Leckband D, Schwartz DK, Wu Y (2024) Computational and experimental approaches to quantify protein binding interactions under confinement. Biophys J 123(4):424–434

    Article  Google Scholar 

  • Ren X, Hurley JH (2010) VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 29(6):1045–1054

    Article  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci 72(8):3111–3113

    Article  Google Scholar 

  • Torney DC, McConnell Harden M (1983) Diffusion-limited reaction rate theory for two-dimensional systems. Proc R Soc Lond A Math Phys Sci 387(1792):147–170

    Google Scholar 

  • Winkler FK, Stanley KK (1983) Clathrin heavy chain, light chain interactions. EMBO J 2(8):1393–1400

    Article  Google Scholar 

  • Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475(7357):510–513

    Article  Google Scholar 

  • Zheng S, Zou M, Shao Y, Hua** W, Helong W, Wang X (2023) Two-dimensional measurements of receptor-ligand interactions. Front Mol Biosci 10:1154074

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Dallon for his help in proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan G. Dixon.

Ethics declarations

Conflict of interest

All authors have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Theorem 1

For a matrix, \({\textbf {W}}\), of the form \({\textbf {W}}=\delta {\textbf {L}} -k {\textbf {E}}\) where \({\textbf {L}}\) is a matrix with zero column sum, \(\{\delta ,k\} \in \mathbb {R}\), and \({\textbf {E}}={\textbf {ee}}^T\) with

$$\begin{aligned} {\textbf {e}}= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \end{aligned}$$

\({\textbf {W}}^{-1}=\frac{{\textbf {A}}}{\delta }-\frac{\pmb {\Pi }}{k}\) where \({\textbf {A}}\) is independent of both \(\delta \) and k, and \(\pmb {\Pi }= \pmb {\eta } {\textbf {1}}^T\) where \(\pmb {\eta }\) is an element of the null(L) normalized such that \(\pmb {\eta }(1)=1\).

Proof of Theorem 1.

For a matrix \({\textbf {W}}\) which can be written as \({\textbf {W}}=\delta {\textbf {L}} -k {\textbf {E}}\) where \({\textbf {L}}\) is a matrix with zero column sum and \({\textbf {E}}={\textbf {ee}}^T\) with

$$\begin{aligned} {\textbf {e}}= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \end{aligned}$$
(112)

it follows that

$$\begin{aligned}{} & {} \frac{d{\textbf {W}}}{dk}=-{\textbf {E}} \end{aligned}$$
(113)
$$\begin{aligned}{} & {} \frac{d{\textbf {W}}}{d\delta }={\textbf {L}}. \end{aligned}$$
(114)

Observe that

$$\begin{aligned} 0= & {} \frac{d}{dk}({\textbf {W}}{} {\textbf {W}}^{-1}) \end{aligned}$$
(115)
$$\begin{aligned}= & {} \frac{d{\textbf {W}}}{dk}{} {\textbf {W}}^{-1}+{\textbf {W}}\frac{d{\textbf {W}}^{-1}}{dk} \end{aligned}$$
(116)
$$\begin{aligned}= & {} -{\textbf {E}}{} {\textbf {W}}^{-1}+{\textbf {W}}\frac{d{\textbf {W}}^{-1}}{dk}. \end{aligned}$$
(117)

Therefore,

$$\begin{aligned} {\textbf {W}}\frac{d{\textbf {W}}^{-1}}{dk}={\textbf {E}}{} {\textbf {W}}^{-1}. \end{aligned}$$
(118)

Now consider the matrix \({\textbf {W}}(\frac{d{\textbf {W}}^{-1}}{dk}-\frac{\pmb {\Pi }}{k^2}){\textbf {W}}\).

$$\begin{aligned} {\textbf {W}}\left( \frac{d{\textbf {W}}^{-1}}{dk}-\frac{\pmb {\Pi }}{k^2}\right) {\textbf {W}}= & {} {\textbf {W}}\frac{d{\textbf {W}}^{-1}}{dk}{} {\textbf {W}}-\frac{{\textbf {W}}\pmb {\Pi } {\textbf {W}}}{k^2} \end{aligned}$$
(119)
$$\begin{aligned}= & {} {\textbf {E}}{} {\textbf {W}}^{-1}{} {\textbf {W}}-\frac{{\textbf {W}}\pmb {\Pi } {\textbf {W}}}{k^2} \end{aligned}$$
(120)
$$\begin{aligned}= & {} {\textbf {E}}-\frac{(\delta {\textbf {L}}-k{\textbf {E}})\pmb {\eta } {\textbf {1}}^T(\delta {\textbf {L}}-k{\textbf {E}})}{k^2}. \end{aligned}$$
(121)

Recall that \({\textbf {L}}\pmb {\eta } = 0\) and that \({\textbf {1}}^T{\textbf {L}}=0\). Therefore,

$$\begin{aligned} {\textbf {E}}-\frac{(\delta {\textbf {L}}-k{\textbf {E}})\pmb {\eta } {\textbf {1}}^T(\delta {\textbf {L}}-k{\textbf {E}})}{k^2}= & {} {\textbf {E}}-\frac{k^2{\textbf {E}}\pmb {\eta }{} {\textbf {1}}^T{\textbf {E}}}{k^2} \end{aligned}$$
(122)
$$\begin{aligned}= & {} {\textbf {E}}-{\textbf {ee}}^T\pmb {\eta }{} {\textbf {1}}^T{\textbf {ee}}^T \end{aligned}$$
(123)
$$\begin{aligned}= & {} {\textbf {E}}-{\textbf {E}} \end{aligned}$$
(124)
$$\begin{aligned}= & {} 0. \end{aligned}$$
(125)

Therefore,

$$\begin{aligned} {\textbf {W}}\left( \frac{d{\textbf {W}}^{-1}}{dk}-\frac{\pmb {\Pi }}{k^2}\right) {\textbf {W}} = 0 \end{aligned}$$
(126)

and since \({\textbf {W}}\) is nonsingular

$$\begin{aligned} \frac{d{\textbf {W}}^{-1}}{dk}-\frac{\pmb {\Pi }}{k^2} = 0 \end{aligned}$$
(127)

This can be rewritten as

$$\begin{aligned} \frac{d}{dk}\left( {\textbf {W}}^{-1}+\frac{\pmb {\Pi }}{k}\right) = 0. \end{aligned}$$
(128)

which leads to the conclusion that \({\textbf {W}}^{-1}+\frac{\pmb {\Pi }}{k}\) is independent of k. Therefore,

$$\begin{aligned} {\textbf {W}}^{-1}+\frac{\pmb {\Pi }}{k} = f(\delta ). \end{aligned}$$
(129)

It now remains to prove that \({\textbf {A}}\) is independent of \(\delta \). To do this, we first show that \({\textbf {E}}{} {\textbf {A}}={\textbf {A}}{} {\textbf {E}}=0\).

Assume that \({\textbf {W}}^{-1} = \frac{{\textbf {A}}}{\delta }-\frac{\pmb {\Pi }}{k}\). Since \({\textbf {W}}{} {\textbf {W}}^{-1}={\textbf {I}}\), it follows that

$$\begin{aligned} {\textbf {I}}= & {} (\delta {\textbf {L}}-k{\textbf {E}})\left( \frac{{\textbf {A}}}{\delta }-\frac{\pmb {\Pi }}{k}\right) \end{aligned}$$
(130)
$$\begin{aligned}= & {} \frac{\delta {\textbf {L}}{} {\textbf {A}}}{\delta }-\frac{\delta {\textbf {L}}\pmb {\Pi }}{k}-\frac{k{\textbf {E}}{} {\textbf {A}}}{\delta }+\frac{k{\textbf {E}}\pmb {\Pi }}{k} \end{aligned}$$
(131)
$$\begin{aligned}= & {} \frac{{\textbf {W}}{} {\textbf {A}}}{\delta }+{\textbf {E}}\pmb {\Pi }. \end{aligned}$$
(132)

Rearranging,

$$\begin{aligned} \frac{{\textbf {W}}{} {\textbf {A}}}{\delta }= & {} {\textbf {I}}-{\textbf {E}}\pmb {\Pi }. \end{aligned}$$
(133)

Notice that \({\textbf {I}}-{\textbf {E}}\pmb {\Pi }\) has the structure

$$\begin{aligned} \begin{bmatrix} 0 &{} -1 &{} -1 &{} \cdots &{} -1 \\ &{} 1 &{} &{} &{} \\ &{} &{} 1 &{} &{} \\ &{} &{} &{} \ddots &{} \\ &{} &{} &{} &{} 1 \end{bmatrix}. \end{aligned}$$
(134)

Observe that \(({\textbf {I}}-{\textbf {E}}\pmb {\Pi }){\textbf {E}}\) is a matrix of all zeros.

$$\begin{aligned} \begin{bmatrix} 0 &{} -1 &{} -1 &{} \cdots &{} -1 \\ &{} 1 &{} &{} &{} \\ &{} &{} 1 &{} &{} \\ &{} &{} &{} \ddots &{} \\ &{} &{} &{} &{} 1 \end{bmatrix} \begin{bmatrix} 1 &{} 0 &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \end{bmatrix} = \begin{bmatrix} 0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} 0 &{} \cdots &{} 0 \end{bmatrix}. \end{aligned}$$
(135)

Therefore, \(\frac{{\textbf {W}}{} {\textbf {A}}{} {\textbf {E}}}{\delta } = ({\textbf {I}}-{\textbf {E}}\pmb {\Pi }){\textbf {E}} = 0\). Since \({\textbf {W}}\) is nonsingular, \({\textbf {A}}{} {\textbf {E}}=0\). We can similarly show that \({\textbf {E}}{} {\textbf {A}}=0\). We now show that \({\textbf {A}}\) is independent of \(\delta \).

$$\begin{aligned} 0= & {} \frac{d}{d\delta }({\textbf {W}}{} {\textbf {W}}^{-1}) \end{aligned}$$
(136)
$$\begin{aligned}= & {} \frac{d{\textbf {W}}}{d\delta }{} {\textbf {W}}^{-1}+{\textbf {W}}\frac{d{\textbf {W}}^{-1}}{d\delta } \end{aligned}$$
(137)
$$\begin{aligned}= & {} {\textbf {L}}\left( \frac{{\textbf {A}}}{\delta }-\frac{\pmb {\Pi }}{k}\right) +(\delta {\textbf {L}}-k{\textbf {E}})\left( \frac{d{\textbf {A}}}{\delta }\frac{1}{\delta }-\frac{{\textbf {A}}}{\delta ^2}\right) \end{aligned}$$
(138)
$$\begin{aligned}= & {} \frac{{\textbf {L}}{} {\textbf {A}}}{\delta }-\frac{{\textbf {L}}\pmb {\Pi }}{k}+\frac{{\textbf {W}}}{\delta }\frac{d{\textbf {A}}}{d\delta }-\frac{\delta {\textbf {L}}{} {\textbf {A}}}{\delta ^2}+\frac{k{\textbf {E}}{} {\textbf {A}}}{\delta ^2} \end{aligned}$$
(139)
$$\begin{aligned}= & {} \frac{{\textbf {W}}}{\delta }\frac{d{\textbf {A}}}{d\delta }. \end{aligned}$$
(140)

Therefore, \(\frac{d{\textbf {A}}}{d\delta }=0\) and \({\textbf {A}}\) is indeed independent of \(\delta \) which proves that \({\textbf {W}}^{-1}=\frac{{\textbf {A}}}{\delta }-\frac{\pmb {\Pi }}{k}\) with \({\textbf {A}}\) independent of \(\delta \) and k.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, M.G., Keener, J.P. Dimensional Dependence of Binding Kinetics. Bull Math Biol 86, 87 (2024). https://doi.org/10.1007/s11538-024-01311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-024-01311-2

Keywords

Navigation