Log in

Extraordinary Optical Transmission Spectrum Property Analysis of Long-Wavelength Infrared Micro-Nano-Cross-Linked Metamaterial Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Filter elements based on metamaterial structure are one of the essential schemes for researching the miniaturization of spectral detection systems. The aim of this study is to meet the application requirements of different long-wave infrared signal frequency filtering and improve the detection efficiency of micro-filters. In this paper, a periodic micro-nano-cross-linked hole structure is designed, based on the surface plasmonic polariton resonance effect to realize the extraordinary optical transmission performance of 8 ~ 12 μm long-wave infrared. Based on the surface plasmonic polariton excitation mechanism of periodic micro-nano-structures, the tunable performance of the transmission spectra at five central wavelengths of 8, 9, 10, 11, and 12 μm was achieved by changing the simulation period and the overall period of the model, and the optimal peak transmittance was 88.31% with a half-wave width of 1.31 ± 0.01 μm. The present study summarizes the tuning mode and rule of the micro-nano-cross-linked structure to realize the blue/redshift under the performance of the extraordinary optical transmission, which provides an important reference for the miniaturized structure design of infrared spectral detectors and tunable filtering research and is conducive to the application of broadband filtering spectral chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Yang Z, Albrow-Owen T, Cai W et al (2021) Miniaturization of optical spectrometers[J]. Science 371(6528):eabe0722. https://doi.org/10.1126/science.abe0722

  2. Hu X, Zhou L, Wu X et al (2023) Review on near-field detection technology in the biomedical field[J]. Advanced Photonics Nexus 2(4):044002–044002

    Article  Google Scholar 

  3. Qian J, Cao Y, Bi Y et al (2023) Structured illumination microscopy based on principal component analysis[J]. eLight 3(1):4

  4. Zhang Y, He Y, Wang H et al (2020) Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens[J]. ACS Photonics 8(1):202–208

    Article  CAS  Google Scholar 

  5. Agarwal S, Prajapati YK (2018) Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application[J]. Opt Commun 413:39–43

    Article  CAS  Google Scholar 

  6. Irwin PGJ, Dobinson J, James A et al (2023) Spectral determination of the colour and vertical structure of dark spots in Neptune’s atmosphere. Nat Astron. https://doi.org/10.1038/s41550-023-02047-0

    Article  Google Scholar 

  7. Lustig-Yaeger J, Fu G, May EM et al (2023) A JWST transmission spectrum of the nearby Earth-sized exoplanet LHS 475 b. Nat Astron. https://doi.org/10.1038/s41550-023-02064-z

    Article  Google Scholar 

  8. Baqué M et al (2022) Biosignature stability in space enables their use for life detection on Mars. Sci Adv 8:eabn7412. https://doi.org/10.1126/sciadv.abn7412

  9. Zhou Y, Feng H, Li X et al (2023) Tunable mid-infrared selective emitter with thermal management for infrared camouflage[J]. Plasmonics pp 1–9. https://doi.org/10.1007/s11468-023-01955-1

  10. ** W, Lee YJ, Yu S et al (2023) Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat Commun 14:4694. https://doi.org/10.1038/s41467-023-40350-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hossain MA (2023) UV–Visible–NIR camouflage textiles with natural plant based natural dyes on natural fibre against woodland combat background for defence protection. Sci Rep 13:5021. https://doi.org/10.1038/s41598-023-31725-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li M et al (2020) Manipulating metals for adaptive thermal camouflage. Sci Adv 6:eaba3494. https://doi.org/10.1126/sciadv.aba3494

  13. Hua X, Wang Y, Wang S et al (2022) Ultra-compact snapshot spectral light-field imaging. Nat Commun 13:2732. https://doi.org/10.1038/s41467-022-30439-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, Suo J, Dong K et al (2023) Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat Commun 14:5043. https://doi.org/10.1038/s41467-023-40739-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Kusama S, Furutani Y et al (2023) High-speed scanless entire bandwidth mid-infrared chemical imaging. Nat Commun 14:3929. https://doi.org/10.1038/s41467-023-39628-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao F, Wang X, Sureshbabu SH et al (2023) Heat-assisted detection and ranging. Nature 619:743–748. https://doi.org/10.1038/s41586-023-06174-6

    Article  CAS  PubMed  Google Scholar 

  17. Bannon D (2009) Cubes and slices Nature Photon 3:627–629. https://doi.org/10.1038/nphoton.2009.205

    Article  CAS  Google Scholar 

  18. Ebbesen T, Lezec H, Ghaemi H et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669. https://doi.org/10.1038/35570

    Article  CAS  Google Scholar 

  19. Tavakoli M, Jalili YS, Elahi SM (2019) Rayleigh-Wood anomaly approximation with FDTD simulation of plasmonic gold nanohole array for determination of optimum extraordinary optical transmission characteristics[J]. Superlattices Microstruct 130:454–471. https://doi.org/10.1016/j.spmi.2019.04.035

    Article  CAS  Google Scholar 

  20. Park J, Lee H, Gliserin A et al (2020) Spectral shifting in extraordinary optical transmission by polarization-dependent surface plasmon coupling. Plasmonics 15:489–494. https://doi.org/10.1007/s11468-019-01058-w

    Article  Google Scholar 

  21. Song J, Shi Y, Liu X et al (2021) Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays[J]. Optical Materials Express 11(8):2700–2710. https://doi.org/10.1364/ome.430500

    Article  CAS  Google Scholar 

  22. Wang A, Dan Y (2018) Mid-infrared plasmonic multispectral filters[J]. Sci Rep 8(1):11257. https://doi.org/10.1038/s41598-018-29177-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HS, Hwang GW, Seong TY et al (2021) Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer[J]. Sci Rep 11(1):12218. https://doi.org/10.1038/s41598-021-91762-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo Y, Liu J, Yang H et al (2023) Enhanced circular dichroism by F-type chiral metal nanostructures[C]//Photonics. MDPI 10(9):1028

    CAS  Google Scholar 

  25. Liu Q, Song Y, Zeng P et al (2020) High-fidelity fabrication of plasmonic nanoholes array via ion-beam planarization for extraordinary transmission applications[J]. Appl Surf Sci 526:146690

    Article  CAS  Google Scholar 

  26. Zhong Y, Sun F, Liu H (2019) Impact of propagative surface plasmon polaritons on the electromagnetic enhancement by localized gap surface plasmons between metallic nanoparticles and substrate. Plasmonics 14:1393–1403. https://doi.org/10.1007/s11468-019-00929-6

    Article  CAS  Google Scholar 

  27. Kolwas K (2019) Decay dynamics of localized surface plasmons: dam** of coherences and populations of the oscillatory plasmon modes. Plasmonics 14:1629–1637. https://doi.org/10.1007/s11468-019-00958-1

    Article  Google Scholar 

  28. Krzemińska Z, Jacak JE, Jacak WA (2023) On dam** of plasmons and plasmon-polaritons in metallic nanostructures and its influence onto numerical simulations. Plasmonics 18:1211–1222. https://doi.org/10.1007/s11468-023-01838-5

    Article  Google Scholar 

  29. Indhu AR, Dharanya C, Dharmalingam G (2023) Plasmonic copper: ways and means of achieving, directing, and utilizing surface plasmons. Plasmonics. https://doi.org/10.1007/s11468-023-02034-1

    Article  Google Scholar 

  30. Sbeah ZA, Adhikari R, Sorathiya V et al (2023) A review on metamaterial sensors based on active plasmonic materials. Plasmonics 18:1619–1638. https://doi.org/10.1007/s11468-023-01904-y

    Article  Google Scholar 

  31. Ogawa S, Kimata M (2018) Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review[J]. Materials 11(3):458. https://doi.org/10.3390/ma11030458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo Y, Liang Z, Meng D et al (2019) Ultra-broadband and high absorbance metamaterial absorber in long wavelength Infrared based on hybridization of embedded cavity modes[J]. Opt Commun 448:1–9. https://doi.org/10.1016/j.optcom.2019.04.080

    Article  CAS  Google Scholar 

  33. Zhou Y, Qin Z, Liang Z et al (2021) Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci Appl 10:138. https://doi.org/10.1038/s41377-021-00577-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Babar S, Weaver JH (2015) Optical constants of Cu, Ag, and Au revisited[J]. Appl Opt 54(3):477–481. https://doi.org/10.1364/AO.54.000477

    Article  CAS  Google Scholar 

  35. Moharam MG, Gaylord TK (1981) Rigorous coupled-wave analysis of planar-grating diffraction[J]. JOSA 71(7):811–818. https://doi.org/10.1364/JOSA.71.000811

    Article  Google Scholar 

  36. García-Vidal FJ, Lezec HJ, Ebbesen TW et al (2003) Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Phys Rev Lett 90(21):213901

    Article  PubMed  Google Scholar 

  37. Yang F, Sambles JR (2002) Resonant transmission of microwaves through a narrow metallic slit[J]. Phys Rev Lett 89(6):063901

    Article  PubMed  Google Scholar 

  38. Shahnavaz N, Mohebbi M (2021) The large near-field enhancement due to strong coupling between the LSP on the metal coupled nanodisks and on the gold film for short attosecond pulse generation. Plasmonics 16:305–314. https://doi.org/10.1007/s11468-020-01340-2

    Article  CAS  Google Scholar 

  39. Della Giovampaola C, Engheta N (2016) Plasmonics without negative dielectrics[J]. Phys Rev B 93(19):195152

    Article  Google Scholar 

  40. Silveirinha M, Engheta N (2006) Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Phys Rev Lett 97(15):157403

    Article  PubMed  Google Scholar 

  41. Li Z, Sun Y, Sun H, Wang K, Song J, Liu L, Chen X, Gu C (2017) Spoof surface plasmons tunneling through an epsilon-near-zero material channel. J Phys D Appl Phys 50(375105):7

  42. Mokhtarpour R, Badri Ghavifekr H (2022) Design and optimization of surface plasmonic sensor with tunable optical actuation angle based on microsystem technology for microfluidic application. Plasmonics 17:2131–2140. https://doi.org/10.1007/s11468-022-01696-7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jilin Province (20200201257JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Structural design, data collection and analysis were performed by Peng Sun, Hongxing Cai, Yu Ren, Jianwei Zhou, Dongliang Li. The first draft of the manuscript was written by Peng Sun and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Hongxing Cai.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Cai, H., Ren, Y. et al. Extraordinary Optical Transmission Spectrum Property Analysis of Long-Wavelength Infrared Micro-Nano-Cross-Linked Metamaterial Structure. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02130-2

Keywords

Navigation