Log in

Ultrabroadband Nanostructured Metamaterial Absorber for Visible and Short-Infrared Spectrum

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This research investigates the design of a nanostructured metamaterial absorber, featuring a core composition of nickel (Ni) metallic patch surrounded by an inductive grid. The proposed Ni-based nano-absorber exhibits a remarkable absorption bandwidth, spanning both visible and short-infrared wavelengths, with an impressive average absorption efficiency of 90% from 400 to 2000 nm. This study comprehensively examines the absorption characteristics of the nano-absorber across a range of incident angles and polarization states of optical light. Notably, the absorber demonstrates a polarization-insensitive response due to the inherent four-fold symmetry within its nanoresonator design and gives a sizeable absorption for various incident angles. Furthermore, the paper also investigates the surface electric field for a deeper understanding of its performance. Additionally, an equivalent circuit model has been developed for the proposed nanostructured absorber, and a comparison between the simulated and analytical absorption shows a close agreement between them. The simple and easily fabricable design of this absorber makes it a promising candidate for diverse applications, encompassing energy harvesting, solar cells, photodetectors, etc. Furthermore, the straightforward and versatile geometry of the proposed nano-absorber can be readily adapted for use in different operating frequency spectra, including microwave and terahertz ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study

References

  1. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations. John Wiley & Sons

  2. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150

    Article  CAS  PubMed  Google Scholar 

  3. Alsulami QA, Wageh S, Al-Ghamdi AA, Bilal RMH, Saeed MA (2022) A tunable and wearable dual-band metamaterial absorber based on polyethylene terephthalate (PET) substrate for sensing applications. Polymers 14(21):4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bilal R, Baqir M, Choudhury P, Ali M, Rahim A (2020) Tunable and multiple plasmon-induced transparency in a metasurface comprised of silver s-shaped resonator and rectangular strip. IEEE Photonics J 12(3):1–13

    Article  Google Scholar 

  5. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48

    Article  CAS  Google Scholar 

  6. Smith DR, Pendry JB, Wiltshire MC (2004) “Metamaterials and negative refractive index.” Science 305(5685):788–792

  7. Groever B, Chen WT, Capasso F (2017) Meta-lens doublet in the visible region. Nano Lett 17(8):4902–4907

    Article  CAS  PubMed  Google Scholar 

  8. Grant J, Kenney M, Shah YD, Escorcia-Carranza I, Cumming DR (2018) CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications. Opt Express 26(8):10408–10420

    Article  CAS  PubMed  Google Scholar 

  9. Landy N, Smith DR (2013) A full-parameter unidirectional metamaterial cloak for microwaves. Nat Mater 12(1):25–28

    Article  CAS  PubMed  Google Scholar 

  10. Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C (2013) Strong near field enhancement in THz nano-antenna arrays. Sci Rep 3(1):1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmad T et al (2022) Ultrawideband cross-polarization converter using anisotropic reflective metasurface. Electronics 11(3):487

    Article  CAS  Google Scholar 

  12. Naveed MA, Bilal RMH, Rahim AA, Baqir MA, Ali MM (2021) Polarization-insensitive dual-wideband fractal meta-absorber for terahertz applications. Appl Opt 60(29):9160–9166

    Article  PubMed  Google Scholar 

  13. Zetterstrom O, Hamarneh R, Quevedo-Teruel O (2021) Experimental validation of a metasurface Luneburg lens antenna implemented with glide-symmetric substrate-integrated holes. IEEE Antennas Wirel Propag Lett 20(5):698–702

    Article  Google Scholar 

  14. Zhu H, Cheung S, Chung KL, Yuk TI (2013) Linear-to-circular polarization conversion using metasurface. IEEE Trans Antennas Propag 61(9):4615–4623

    Article  Google Scholar 

  15. Bilal RMH et al (2021) Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial. IEEE Access 9:5670–5677

    Article  Google Scholar 

  16. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11(11):917–924

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Zhang X (2011) Metamaterials: a new frontier of science and technology. Chem Soc Rev 40(5):2494–2507

    Article  CAS  PubMed  Google Scholar 

  18. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  PubMed  Google Scholar 

  19. Feng H et al (2021) Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt Express 29(4):6000–6010

    Article  PubMed  Google Scholar 

  20. Staude I, Schilling J (2017) Metamaterial-inspired silicon nanophotonics. Nat Photonics 11(5):274–284

    Article  CAS  Google Scholar 

  21. He Y, Gao Z, Jia D, Zhang W, Du B, Chen ZN (2017) Dielectric metamaterial-based impedance-matched elements for broadband reflectarray. IEEE Trans Antennas Propag 65(12):7019–7028

    Article  Google Scholar 

  22. Iwaszczuk K, Strikwerda AC, Fan K, Zhang X, Averitt RD, Jepsen PU (2012) Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express 20(1):635–643

    Article  CAS  PubMed  Google Scholar 

  23. Garg P, Jain P (2019) Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band. IEEE Trans Circuits Syst II Express Briefs 67(4):675–679

    Google Scholar 

  24. Wang BX, Zhai X, Wang G-Z, Huang WQ, Wang L-L (2015) “A novel dual-band terahertz metamaterial absorber for a sensor application.” J Appl Phys 117(1)

  25. Liang JC et al (2021) An angle-insensitive 3-bit reconfigurable intelligent surface. IEEE Trans Antennas Propag 70(10):8798–8808

    Article  Google Scholar 

  26. Bilal R, Baqir M, Choudhury PK, Ali MM, Rahim AA, Kamal W (2020) Polarization-insensitive multi-band metamaterial absorber operating in the 5G spectrum. Optik 216:164958

    Article  Google Scholar 

  27. Bilal R, Naveed M, Baqir M, Ali M, Rahim A (2020) Design of a wideband terahertz metamaterial absorber based on Pythagorean-tree fractal geometry. Optical Materials Express 10(12):3007–3020

    Article  CAS  Google Scholar 

  28. Deng G, Yang J, Yin Z (2017) Broadband terahertz metamaterial absorber based on tantalum nitride. Appl Opt 56(9):2449–2454. https://doi.org/10.1364/AO.56.002449

    Article  CAS  PubMed  Google Scholar 

  29. Yahiaoui R, Tan S, Cong L, Singh R, Yan F, Zhang W (2015) “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber.” J Appl Phys 118(8)

  30. Jiao S, Li Y, Yang H, Xu S (2021) Numerical study of ultra-broadband wide-angle absorber. Results in Physics 24:104146

    Article  Google Scholar 

  31. Liu Y, Liu H, ** Y, Zhu L (2020) Ultra-broadband perfect absorber utilizing a multi-size rectangular structure in the UV-MIR range. Results in Physics 18:103336

    Article  Google Scholar 

  32. Madni A, Bilal RMH, Khan WT (2022) “A compact metamaterial based high isolation MIMO antenna for 5.8 GHz WLAN applications,” in 2022. IEEE Int Symp Antennas Propag. USNC-URSI Radio Science Meeting (AP-S/URSI) IEEE 245–246

  33. Yoo M, Kim HK, Lim S (2016) Electromagnetic-based ethanol chemical sensor using metamaterial absorber. Sens Actuators, B Chem 222:173–180

    Article  CAS  Google Scholar 

  34. Zhang Y, Dong H, Mou N, Chen L, Li R, Zhang L (2020) High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Opt Express 28(18):26836–26849

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352

    Article  CAS  Google Scholar 

  36. Wang H, Sivan VP, Mitchell A, Rosengarten G, Phelan P, Wang L (2015) Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol Energy Mater Sol Cells 137:235–242

    Article  Google Scholar 

  37. Tuan TS, Hoa NTQ (2019) Numerical study of an efficient broadband metamaterial absorber in visible light region. IEEE Photonics J 11(3):1–10

    Article  Google Scholar 

  38. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25(24):3264–3294

    Article  CAS  PubMed  Google Scholar 

  39. Patel SK, Parmar J, Katrodiya D, Nguyen TK, Holdengreber E, Dhasarathan V (2020) Broadband metamaterial-based near-infrared absorber using an array of uniformly placed gold resonators. JOSA B 37(7):2163–2170

    Article  CAS  Google Scholar 

  40. Liang C et al (2019) A broadband and polarization-independent metamaterial perfect absorber with monolayer Cr and Ti elliptical disks array. Results in Physics 15:102635

    Article  Google Scholar 

  41. Bilal RMH, Baqir MA, Hameed M, Naqvi SA, Ali MM (2022) Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime. JOSA A 39(1):136–142

    Article  CAS  PubMed  Google Scholar 

  42. Bilal RMH, Zakir S, Naveed MA, Zubair M, Mehmood MQ, Massoud Y (2023) Nanoengineered nickel-based ultrathin metamaterial absorber for the visible and short-infrared spectrum. Optical Materials Express 13(1):28–40

    Article  CAS  Google Scholar 

  43. Qian Q, Yan Y, Wang C (2018) Flexible metasurface black nickel with stepped nanopillars. Opt Lett 43(6):1231–1234

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Y, Luo M, Shen S, Zhang H, Pu D, Chen L (2018) Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array. Opt Express 26(21):27482–27491

    Article  CAS  PubMed  Google Scholar 

  45. Naveed MA, Bilal RMH, Baqir MA, Bashir MM, Ali MM, Rahim AA (2021) Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt Express 29(26):42911–42923

    Article  CAS  Google Scholar 

  46. Hakim ML et al (2022) Ultrawideband polarization-independent nanoarchitectonics: a perfect metamaterial absorber for visible and infrared optical window applications. Nanomaterials 12(16):2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mehrabi S, Bilal RMH, Naveed MA, Ali MM (2022) Ultra-broadband nanostructured metamaterial absorber based on stacked square-layers of TiN/TiO 2. Optical Materials Express 12(6):2199–2211

    Article  CAS  Google Scholar 

  48. Sheta E, Choudhury P, Ibrahim A-BM (2022) Polarization-insensitive ultra-wideband metamaterial absorber comprising different forms of ZrN structures at the metasurface. Opt Mater 133:112990

    Article  CAS  Google Scholar 

  49. Costa F, Monorchio A, Manara G (2012) Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas Propag Mag 54(4):35–48

    Article  Google Scholar 

  50. Costa F, Genovesi S, Monorchio A, Manara G (2012) A circuit-based model for the interpretation of perfect metamaterial absorbers. IEEE Trans Antennas Propag 61(3):1201–1209

    Article  Google Scholar 

  51. Lee CK, Langley R (1985) “Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence.” in IEEE Proceed H (Microwaves, Antennas and Propagation) 132(6):395–399

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhipeng Gao is the single author of this article.

Corresponding author

Correspondence to Zhipeng Gao.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z. Ultrabroadband Nanostructured Metamaterial Absorber for Visible and Short-Infrared Spectrum. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02132-0

Keywords

Navigation