Log in

Simultaneous detection of flare-associated kink oscillations and extreme-ultraviolet waves

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Kink oscillations, which are frequently observed in coronal loops and prominences, are often accompanied by extreme-ultraviolet (EUV) waves. However, much more needs to be explored regarding the causal relationships between kink oscillations and EUV waves. In this article, we report the simultaneous detection of kink oscillations and EUV waves that are both associated with an X2.1 flare on 2023 March 03 (SOL2023-03-03T17:39). The kink oscillations, which are almost perpendicular to the axes of loop-like structures, are observed in three coronal loops and one prominence. One short loop shows in-phase oscillation within the same period of 5.2 min at three positions. This oscillation could be triggered by the pushing of an expanding loop and interpreted as the standing kink wave. Time lags are found between the kink oscillations of the short loop and two long loops, suggesting that the kink wave travels in different loops. The kink oscillations of one long loop and the prominence are possibly driven by the disturbance of the coronal mass ejection (CME), and that of another long loop might be attributed to the interaction of the EUV wave. The onset time of the kink oscillation of the short loop is nearly same as the beginning of an EUV wave. This fact demonstrates that they are almost simultaneous. The EUV wave is most likely excited by the expanding loop structure and shows two components. The leading component is a fast coronal wave, and the trailing one could be due to the stretching magnetic field lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Doorsselaere T, Srivastava A K, Antolin P, et al. Coronal heating by MHD waves. Space Sci Rev, 2020, 216: 140

    Article  Google Scholar 

  2. Nakariakov V M, Anfinogentov S A, Antolin P, et al. Kink oscillations of coronal loops. Space Sci Rev, 2021, 217: 73

    Article  Google Scholar 

  3. Chelpanov M, Anfinogentov S, Kostarev D, et al. Review and comparison of MHD wave characteristics at the Sun and in Earth’s magnetosphere. Sol-Terrestrial Phys, 2022, 8: 3–27

    Article  Google Scholar 

  4. Aschwanden M J, Fletcher L, Schrijver C J, et al. Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys J, 1999, 520: 880–894

    Article  Google Scholar 

  5. Nakariakov V M, Ofman L, Deluca E E, et al. TRACE observation of damped coronal loop oscillations: Implications for coronal heating. Science, 1999, 285: 862–864

    Article  Google Scholar 

  6. Su W, Guo Y, Erdelyi R, et al. Period increase and amplitude distribution of kink oscillation of coronal loop. Sci Rep, 2018, 8: 4471

    Article  Google Scholar 

  7. Nechaeva A, Zimovets I V, Nakariakov V M, et al. Catalog of decaying kink oscillations of coronal loops in the 24th solar cycle. Astrophys J Suppl Ser, 2019, 241: 31

    Article  Google Scholar 

  8. Kumar P, Nakariakov V M, Karpen J T, et al. Kink oscillation of a flux rope during a failed solar eruption. Astrophys J Lett, 2022, 932: L9

    Article  Google Scholar 

  9. Li D, Bai X, Tian H, et al. Traveling kink oscillations of coronal loops launched by a solar flare. Astron Astrophys, 2023, 675: A169

    Article  Google Scholar 

  10. Zimovets I V, Nakariakov V M. Excitation of kink oscillations of coronal loops: Statistical study. Astron Astrophys, 2015, 577: A4

    Article  Google Scholar 

  11. Reeves K K, Polito V, Chen B, et al. Hot plasma flows and oscillations in the loop-top region during the 2017 September 10 X8.2 solar flare. Astrophys J, 2020, 905: 165

    Article  Google Scholar 

  12. Zhang Q, Li C, Li D, et al. First detection of transverse vertical oscillation during the expansion of coronal loops. Astrophys J Lett, 2022, 937: L21

    Article  Google Scholar 

  13. Nakariakov V M, Yelagandula N V. Dam** scenarios of kink oscillations of solar coronal loops. Universe, 2023, 9: 95

    Article  Google Scholar 

  14. Anfinogentov S A, Nakariakov V M, Nisticò G. Decayless low-amplitude kink oscillations: A common phenomenon in the solar corona? Astron Astrophys, 2015, 583: A136

    Article  Google Scholar 

  15. Li D, Li Y, Lu L, et al. Observations of a quasi-periodic pulsation in the coronal loop and microwave flux during a solar preflare phase. Astrophys J Lett, 2020, 893: L17

    Article  Google Scholar 

  16. Mandal S, Tian H, Peter H. Flare-induced decay-less transverse oscillations in solar coronal loops. Astron Astrophys, 2021, 652: L3

    Article  Google Scholar 

  17. Shi F, Ning Z, Li D. Investigation of the oscillations in a flare-productive active region. Res Astron Astrophys, 2022, 22: 105017

    Article  Google Scholar 

  18. Zhong S, Nakariakov V M, Kolotkov D Y, et al. Polarisation of decay-less kink oscillations of solar coronal loops. Nat Commun, 2023, 14: 5298

    Article  Google Scholar 

  19. Safna Banu K, Maurya R A, Jain Jacob P T. Transverse oscillation of coronal loops induced by eruptions of a magnetic flux tube and a plasmoid. Sol Phys, 2022, 297: 134

    Article  Google Scholar 

  20. Li D, Long D M. A statistical study of short-period decayless oscillations of coronal loops in an active region. Astrophys J, 2023, 944: 8

    Article  Google Scholar 

  21. Arregui I, Oliver R, Ballester J L. Prominence oscillations. Living Rev Sol Phys, 2018, 15: 3

    Article  Google Scholar 

  22. Li D, Shen Y, Ning Z, et al. Two kinds of dynamic behavior in a quiescent prominence observed by the NVST. Astrophys J, 2018, 863: 192

    Article  Google Scholar 

  23. Li D, Yuan D, Su Y N, et al. Non-dam** oscillations at flaring loops. Astron Astrophys, 2018, 617: A86

    Article  Google Scholar 

  24. Shi M, Li B, Chen S X, et al. Excitation of multiperiodic kink motions in solar flare loops: Possible application to quasiperiodic pulsations. Astrophys J Lett, 2023, 943: L19

    Article  Google Scholar 

  25. Gao Y, Tian H, Van Doorsselaere T, et al. Decayless oscillations in solar coronal bright points. Astrophys J, 2022, 930: 55

    Article  Google Scholar 

  26. Yuan D, Fu L, Cao W, et al. Transverse oscillations and an energy source in a strongly magnetized sunspot. Nat Astron, 2023, 7: 856–866

    Article  Google Scholar 

  27. Goddard C R, Nisticò G, Nakariakov V M, et al. A statistical study of decaying kink oscillations detected using SDO/AIA. Astron Astrophys, 2016, 585: A137

    Article  Google Scholar 

  28. Li D, Xue J, Yuan D, et al. Persistent fast kink magnetohydrodynamic waves detected in a quiescent prominence. Sci China-Phys Mech Astron, 2022, 65: 239611

    Article  Google Scholar 

  29. Li D, Shi F, Zhao H, et al. Flare quasi-periodic pulsation associated with recurrent jets. Front Astron Space Sci, 2022, 9: 1032099

    Article  Google Scholar 

  30. Guo X, Liang B, Feng S, et al. Simultaneous detection of flare-related decaying and decayless kink oscillations using jerk-aware motion magnification. Res Astron Astrophys, 2022, 22: 115012

    Article  Google Scholar 

  31. Tian H, McIntosh S W, Wang T, et al. Persistent Doppler shift oscillations observed with hinode/EIS in the solar corona: Spectroscopic signatures of Alfvenic waves and recurring upflows. Astrophys J, 2012, 759: 144

    Article  Google Scholar 

  32. Li D, Ning Z J, Huang Y, et al. Doppler shift oscillations from a hot line observed by IRIS. Astrophys J, 2017, 849: 113

    Article  Google Scholar 

  33. Ning Z, Wang Y, Hong Z, et al. Detections of multi-periodic oscillations during a circular ribbon flare. Sol Phys, 2022, 297: 2

    Article  Google Scholar 

  34. Zhong S, Nakariakov V M, Kolotkov D Y, et al. Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops. Mon Not R Astron Soc, 2022, 516: 5989–5996

    Article  Google Scholar 

  35. Zhong S, Nakariakov V M, Miao Y, et al. 30-min decayless kink oscillations in a very long bundle of solar coronal plasma loops. Sci Rep, 2023, 13: 12963

    Article  Google Scholar 

  36. Li D. Quasi-periodic pulsations with double periods observed in Lyα emission during solar flares. Sci China Tech Sci, 2022, 65: 139–146

    Article  Google Scholar 

  37. Gao Y, Guo M, van Doorsselaere T, et al. Modeling of transverse oscillations driven by p-modes in short coronal loops. Astrophys J, 2023, 955: 73

    Article  Google Scholar 

  38. Petrova E, Magyar N, van Doorsselaere T, et al. High-frequency decayless waves with significant energy in solar orbiter/EUI observations. Astrophys J, 2023, 946: 36

    Article  Google Scholar 

  39. Duckenfield T J, Goddard C R, Pascoe D J, et al. Observational signatures of the third harmonic in a decaying kink oscillation of a coronal loop. Astron Astrophys, 2019, 632: A64

    Article  Google Scholar 

  40. Zhang Q, Zhou Y, Li C, et al. Transverse vertical oscillations during the contraction and expansion of coronal loops. Astrophys J, 2023, 951: 126

    Article  Google Scholar 

  41. Andries J, Arregui I, Goossens M. Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys J, 2005, 624: L57–L60

    Article  Google Scholar 

  42. Shen Y, Zhou X, Duan Y, et al. Coronal quasi-periodic fast-mode propagating wave trains. Sol Phys, 2022, 297: 20

    Article  Google Scholar 

  43. Asai A, Ishii T T, Isobe H, et al. First simultaneous observation of an Hα moreton wave, EUV wave, and filament/prominence oscillations. Astrophys J, 2012, 745: L18

    Article  Google Scholar 

  44. Liu W, Ofman L. Advances in observing various coronal EUV waves in the SDO era and their seismological applications (Invited review). Sol Phys, 2014, 289: 3233–3277

    Article  Google Scholar 

  45. Warmuth A. Large-scale globally propagating coronal waves. Living Rev Sol Phys, 2015, 12: 3

    Article  Google Scholar 

  46. Zheng R, Xue Z, Chen Y, et al. The initial morphologies of the wave-fronts of extreme ultraviolet waves. Astrophys J, 2019, 871: 232

    Article  Google Scholar 

  47. Shen Y. Observation and modelling of solar jets. Proc R Soc A, 2021, 477: 20200217

    Article  Google Scholar 

  48. Hou Z, Tian H, Su W, et al. A type II radio burst driven by a blowout jet on the Sun. Astrophys J, 2023, 953: 171

    Article  Google Scholar 

  49. Nitta N V, Schrijver C J, Title A M, et al. Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory—An ensemble study. Astrophys J, 2013, 776: 58

    Article  Google Scholar 

  50. Liu Y, Zheng R, Zhang L, et al. An extreme-ultraviolet wave associated with the possible expansion of sheared arcades. Astron Astrophys, 2023, 674: A167

    Article  Google Scholar 

  51. Lemen J R, Title A M, Akin D J, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol Phys, 2012, 275: 17–40

    Article  Google Scholar 

  52. Chen P F, Wu Y. First evidence of coexisting EIT wave and coronal moreton wave from SDO/AIA observations. Astrophys J, 2011, 732: L20

    Article  Google Scholar 

  53. Shen Y, Liu Y. Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys J, 2012, 754: 7

    Article  Google Scholar 

  54. Shen Y, Liu Y. Simultaneous observations of a large-scale wave event in the solar atmosphere: From photosphere to corona. Astrophys J, 2012, 752: L23

    Article  Google Scholar 

  55. Shen Y, Ichimoto K, Ishii T T, et al. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave. Astrophys J, 2014, 786: 151

    Article  Google Scholar 

  56. Sun Z, Tian H, Chen P F, et al. Cross-loop propagation of a quasiperiodic extreme-ultraviolet wave train triggered by successive stretching of magnetic field structures during a solar eruption. Astrophys J Lett, 2022, 939: L18

    Article  Google Scholar 

  57. Wang J, Yan X, Xue Z, et al. Two homologous quasi-periodic fastmode propagating wave trains induced by two small-scale filament eruptions. ApJL, 2022, 936: L12

    Article  Google Scholar 

  58. Zhou X, Shen Y, Liang H, et al. Recurrent narrow quasiperiodic fast-propagating wave trains excited by the intermittent energy release in the accompanying solar flare. Astrophys J, 2022, 941: 59

    Article  Google Scholar 

  59. Yuan D, van Doorsselaere T. Forward modeling of standing kink modes in coronal loops. I. Synthetic views. Astrophys J Suppl Ser, 2016, 223: 23

    Article  Google Scholar 

  60. Yuan D, van Doorsselaere T. Forward modeling of standing kink modes in coronal loops. II. Applications. Astrophys J Suppl Ser, 2016, 223: 24

    Article  Google Scholar 

  61. Yuan D, Li B, Walsh R W. Secondary fast magnetoacoustic waves trapped in randomly structured plasmas. Astrophys J, 2016, 828: 17

    Article  Google Scholar 

  62. Yang Z H, Tian H, Tomczyk S, et al. Map** the magnetic field in the solar corona through magnetoseismology. Sci China Tech Sci, 2020, 63: 2357–2368

    Article  Google Scholar 

  63. Yang Z, Bethge C, Tian H, et al. Global maps of the magnetic field in the solar corona. Science, 2020, 369: 694–697

    Article  Google Scholar 

  64. Anfinogentov S A, Antolin P, Inglis A R, et al. Novel data analysis techniques in coronal seismology. Space Sci Rev, 2022, 218: 9

    Article  Google Scholar 

  65. Kolotkov D Y, Li B, Leibacher J. Magnetohydrodynamic (MHD) waves and oscillations in the Sun’s corona and MHD coronal seismology: Editorial. Sol Phys, 2023, 298: 40

    Article  Google Scholar 

  66. Zheng R, Liu Y, Liu W, et al. Why “solar tsunamis” rarely leave their imprints in the chromosphere. Astrophys J Lett, 2023, 949: L8

    Article  Google Scholar 

  67. Liu R, Liu C, Xu Y, et al. Observation of a moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 MAY 24. Astrophys J, 2013, 773: 166

    Article  Google Scholar 

  68. Shen Y, Liu Y D, Chen P F, et al. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave. Astrophys J, 2014, 795: 130

    Article  Google Scholar 

  69. Zhang Q M, Ji H S. Vertical oscillation of a coronal cavity triggered by an EUV wave. Astrophys J, 2018, 860: 113

    Article  Google Scholar 

  70. Devi P, Chandra R, Awasthi A K, et al. Extreme-ultraviolet wave and accompanying loop oscillations. Sol Phys, 2022, 297: 153

    Article  Google Scholar 

  71. Zhang Q M. Simultaneous transverse oscillations of a coronal loop and a filament excited by a circular-ribbon flare. Astron Astrophys, 2020, 642: A159

    Article  Google Scholar 

  72. Shen Y, Tang Z, Li H, et al. Coronal EUV, QFP, and kink waves simultaneously launched during the course of jet-loop interaction. Mon Not R Astron Soc-Lett, 2018, 480: L63–L67

    Article  Google Scholar 

  73. Bai X, Tian H, Deng Y, et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite. Res Astron Astrophys, 2023, 23: 065014

    Article  Google Scholar 

  74. Li C, Fang C, Li Z, et al. The Chinese Ha Solar Explorer (CHASE) mission: An overview. Sci China-Phys Mech Astron, 2022, 65: 289602

    Article  Google Scholar 

  75. Li C, Tian H, Huang Y. New era of Chinese solar instruments. Sci China Tech Sci, 2023, 66: 1203–1204

    Article  Google Scholar 

  76. Zhang S N, Li T P, Lu F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite. Sci China-Phys Mech Astron, 2020, 63: 249502

    Article  Google Scholar 

  77. Tian H. Probing the solar transition region: Current status and future perspectives. Res Astron Astrophys, 2017, 17: 110

    Article  Google Scholar 

  78. Li D, Ning Z J, Zhang Q M. Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys J, 2015, 807: 72

    Article  Google Scholar 

  79. Neupert W M. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys J, 1968, 153: L59

    Article  Google Scholar 

  80. Ning Z. RHESSI observations of the neupert effect in three solar flares. Sol Phys, 2008, 248: 99–111

    Article  Google Scholar 

  81. Ning Z J. The investigation of the Neupert effect in two solar flares. Sci China Ser G-Phys Mech Astron, 2009, 52: 1686–1690

    Article  Google Scholar 

  82. Parenti S. Solar prominences: Observations. Living Rev Sol Phys, 2014, 11: 1

    Article  Google Scholar 

  83. Chen P F, Wu S T, Shibata K, et al. Evidence of EIT and moreton waves in numerical simulations. Astrophys J, 2002, 572: L99–L102

    Article  Google Scholar 

  84. Shen Y, Qu Z, Zhou C, et al. Round-trip slip** motion of the circular flare ribbon evidenced in a fan-spine jet. Astrophys J Lett, 2019, 885: L11

    Article  Google Scholar 

  85. Shen Y, Qu Z, Yuan D, et al. Stereoscopic observations of an erupting mini-filament-driven two-sided-loop jet and the applications for diagnosing a filament magnetic field. Astrophys J, 2019, 883: 104

    Article  Google Scholar 

  86. Li B, Guo M, Yu H, et al. Three-dimensional propagation of kink wave trains in solar coronal slabs. Mon Not R Astron Soc-Lett, 2022, 518: L57–L62

    Article  Google Scholar 

  87. Shen Y, Liu Y, Tian Z, et al. On a small-scale EUV wave: The driving mechanism and the associated oscillating filament. Astrophys J, 2017, 851: 101

    Article  Google Scholar 

  88. Xue Z K, Yan X L, Qu Z Q, et al. Transverse oscillation of a filament triggered by an extreme ultraviolet wave. In: Proceedings of the 7th Solar Polarization Workshop (SPW7). Kunming, 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Additional information

This work was supported by the National Key Ramp;D Program of China 2021YFA1600502 (Grant No. 2021YFA1600500), the National Natural Science Foundation of China (Grant Nos. 11973092, 12073081, 12003064, and 12333009). D. Li is also supported by the Surface Project of Jiangsu Province (Grant No. BK20211402) and Yunnan Key Laboratory of Solar Physics and Space Science (202205AG070009) (Grant No. YN-SPCC202207). SUTRI is a collaborative project conducted by the National Astronomical Observatories of CAS, Peking University, Tongji University, **’an Institute of Optics and Precision Mechanics of CAS and the Innovation Academy for Microsatellites of CAS. The CHASE mission is supported by the China National Space Administration (CNSA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Hou, Z., Bai, X. et al. Simultaneous detection of flare-associated kink oscillations and extreme-ultraviolet waves. Sci. China Technol. Sci. 67, 1592–1601 (2024). https://doi.org/10.1007/s11431-023-2534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2534-8

Navigation