Log in

Map** the magnetic field in the solar corona through magnetoseismology

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Magnetoseismology, a technique of magnetic field diagnostics based on observations of magnetohydrodynamic (MHD) waves, has been widely used to estimate the field strengths of oscillating structures in the solar corona. However, previously magnetoseismology was mostly applied to occasionally occurring oscillation events, providing an estimate of only the average field strength or one-dimensional distribution of field strength along an oscillating structure. This restriction could be eliminated if we apply magnetoseismology to the pervasive propagating transverse MHD waves discovered with the Coronal Multi-channel Polarimeter (CoMP). Using several CoMP observations of the Fe xiii 1074.7 nm and 1079.8 nm spectral lines, we obtained maps of the plasma density and wave phase speed in the corona, which allow us to map both the strength and direction of the coronal magnetic field in the plane of sky. We also examined distributions of the electron density and magnetic field strength, and compared their variations with height in the quiet Sun and active regions. Such measurements could provide critical information to advance our understanding of the Sun’s magnetism and the magnetic coupling of the whole solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scherrer P H, Schou J, Bush R I, et al. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 207–227

    Google Scholar 

  2. Samanta T, Tian H, Yurchyshyn V, et al. Generation of solar spicules and subsequent atmospheric heating. Science, 2019, 366: 890–894

    Google Scholar 

  3. Yan Y, Sakurai T. New boundary integral equation representation for finite energy force-free magnetic fields in open space above the Sun. Sol Phys, 2000, 195: 89–109

    Google Scholar 

  4. Su Y, van Ballegooijen A, Lites B W, et al. Observations and nonlinear force-free field modeling of active region 10953. Astrophys J, 2009, 691: 105

    Google Scholar 

  5. Wiegelmann T, Sakurai T. Solar force-free magnetic fields. Living Rev Sol Phys, 2012, 9: 5

    Google Scholar 

  6. Huang Z H, **a L D, Nelson C J, et al. Magnetic braids in eruptions of a spiral structure in the solar atmosphere. Astrophys J, 2018, 854: 80

    Google Scholar 

  7. Xue Z, Yan X, Cheng X, et al. Observing the release of twist by magnetic reconnection in a solar filament eruption. Nat Commun, 2016, 7: 1–11

    Google Scholar 

  8. Zhu X, Wiegelmann T, Solanki S. Magnetohydrostatic modeling of AR11768 based on a SUNRISE/IMaX vector magnetogram. Astron Astropys, 2020, 640: A103

    Google Scholar 

  9. Chen Y J, Tian H, Zhu X S, et al. Solar ultraviolet bursts in a coordinated observation of IRIS, Hinode and SDO. Sci China Tech Sci, 2019, 62: 1555–1564

    Google Scholar 

  10. Riley P, Linker J A, Lionello R. A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J, 2006, 653: 1510–1516

    Google Scholar 

  11. Jiang J, Wang J X, Zhang J H, et al. What drives the solar magnetic cycle? Chin Sci Bull, 2016, 61: 2973–2985

    Google Scholar 

  12. Liu Y, Lin H. Observational test of coronal magnetic field models. I: Comparison with potential field model. Astrophys J, 2008, 680: 2

    Google Scholar 

  13. Casini R, White S M, Judge P G. Magnetic diagnostics of the solar corona: Synthesizing optical and radio techniques. Space Sci Rev, 2017, 210: 145–181

    Google Scholar 

  14. Li H, Degl’Innocenti E L, Qu Z Q. Polarization of coronal forbidden lines. Astrophys J, 2017, 838: 69

    Google Scholar 

  15. Bak-Steślicka U, Gibson S E, Fan Y H, et al. The magnetic structure of solar prominence cavities: New observaitional signature revealed by coronal magnetometry. Astrophys J Lett, 2013, 770: L28

    Google Scholar 

  16. Rachmeler, L A, Gibson, S E, Dove, J B et al. Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities. Sol Phys, 2013, 288: 617–636

    Google Scholar 

  17. Chen Y J, Tian H, Su Y N, et al. Diagnosing the magnetic field structure of a coronal cavity observed during the 2017 total solar eclipse. Astrophys J, 2018, 856: 21

    Google Scholar 

  18. Lin H S, Penn M J, Tomczyk S. A new precise measurement of the coronal magnetic field strength. Astrophys J Lett, 2000, 541: L83–L86

    Google Scholar 

  19. Lin H S, Kuhn J R, Coulter R. Coronal magnetic field measurements. Astrophys J Lett, 2004, 613: L177–L180

    Google Scholar 

  20. Gopalswamy N, Nitta N, Akiyama S, et al. Coronal magnetic field measurement from EUV images made by the solar dynamics observatory. Astrophys J, 2012, 744: 72

    Google Scholar 

  21. Tan B L, Yan Y H, Tan C M, et al. Microwave zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys J, 2012, 744: 166

    Google Scholar 

  22. Tan B L, Karlicky M, Meszarosova H, et al. Diagnosing physical conditions near the flare energy-release sites from observations of solar microwave type III bursts. Res Astron Astrophys, 2016, 16: 013

    Google Scholar 

  23. Feng S W, Chen Y, Li C Y, et al. Harmonics of solar radio spikes at metric wavelengths. Sol Phys, 2018, 293: 39

    Google Scholar 

  24. Miyawaki S, Iwai K, Shibasaki K, et al. Coronal magnetic fields derived from simultaneous microwave and EUV observations and comparison with the potential field model. Astrophys J, 2016, 818: 8

    Google Scholar 

  25. Gary D E, Chen B, Dennis B R, et al. Microwave and hard X-ray observations of the 2017 September 10 solar limb flare. Astrophys J, 2018, 863: 83

    Google Scholar 

  26. Anfinogentov S A, Stupishin A G, Myshyakov I I, et al. Record-breaking coronal magnetic field in solar active region 12673. Astro-phys J Lett, 2019, 880: L29

    Google Scholar 

  27. Fleishman G D, Gary D E, Chen B, et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science, 2020, 367: 278–280

    Google Scholar 

  28. Zhu R, Tan B L, Su Y N, et al. Microwave diagnostics of magnetic field strengths in solar flaring loops. Sci China Tech Sci, 2020, 63, in press

  29. Chen B, Shen C, Gary D E, et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat Astron, 2020, https://doi.org/10.1038/s41550-020-1147-7

  30. Grumer J, Brage T, Andersson M, et al. Unexpected transitions induced by spin-dependent, hyperfine and external magnetic-field interactions. Phys Scr, 2014, 89: 114002

    Google Scholar 

  31. Li W X, Grumer J, Yang Y, et al. A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+. Astrophys J, 2015, 807: 69

    Google Scholar 

  32. Li W X, Yang Y, Tu B S, et al. Atomic-level pseudo-degeneracy of atomic levels giving transitions induced by magnetic fields, of importance for determining the field strengths in the solar corona. Astrophys J, 2016, 826: 219

    Google Scholar 

  33. Si R, Brage T, Li W X, et al. A first spectroscopic measurement of the magnetic-field strength for an active region of the solar corona. Astro-phys J Lett, 2020, 898: L34

    Google Scholar 

  34. Jess D B, Reznikova V E, Ryans R S I, et al. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves. Nat Phys, 2016, 12: 179–185

    Google Scholar 

  35. Nakariakov V M, Ofman L, DeLuca E E, et al. TRACE observations of damped coronal loop oscillations: Implicationfs for coronal heating. Science, 1999, 285: 862

    Google Scholar 

  36. Ofman L, Wang T J. Hinode observations of transverse waves with flows in coronal loops. Science, 2008, 482: L9–L12

    Google Scholar 

  37. Chen Y, Song H Q, Li B, et al. Streamer waves driven by coronal mass ejections. Astrophys J, 2010, 714: 644–651

    Google Scholar 

  38. Chen Y, Feng S W, Li B, et al. A coronal seismological study with streamer waves. Astrophys J, 2011, 728: 147

    Google Scholar 

  39. Chen F, Peter H. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model. Astron Astropys, 2015, 581: A137

    Google Scholar 

  40. Guo Y, Erdelyi R, Srivastava A K, et al. Magnetohydrodynamic seismology of a coronal loop system by the first two modes of standing kink waves. Astrophys J, 2015, 799: 151

    Google Scholar 

  41. Li L P, Zhang J, Su J T, et al. Oscillation of current sheets in the wake of a flux rope eruption observed by the Solar Dynamics Observatory. Astrophys J Lett, 2016, 829: L33

    Google Scholar 

  42. Li D, Yuan D, Su Y N, et al. Non-dam** oscillations at flaring loops. Astron Astropys, 2018, 617: A86

    Google Scholar 

  43. Su W, Guo Y, Erdélyi R, et al. Period increase and amplitude distribution of kink oscillation of coronal loop. Sci Rep, 2018, 8: 4471

    Google Scholar 

  44. Wang T J, Ofman L, Davila J M, et al. Growing transverse oscillations of a multistranded loop observed by SDO/AIA. Astrophys J Lett, 2012, 751: L27

    Google Scholar 

  45. Tian H, McIntosh S W, Wang T J, et al. Persistent Doppler shift oscillations observed with Hinode/EIS in the solar corona: Spectroscopic signatures of Alfvénic waves and recurring upflows. Astrophys J, 2012, 759: 144

    Google Scholar 

  46. Anfinogentov S A, Nakariakov V M, Nisticò G. Decayless low-amplitude kink oscillations: A common phenomenon in the solar corona? Astron Astropys, 2015, 583: A136

    Google Scholar 

  47. Zhang Q M, Dai J, Xu Z, et al. Transverse coronal loop oscillations excited by homologous circular-ribbon flare. Astron Astropys, 2020, 638: A32

    Google Scholar 

  48. Tomczyk S, Card G L, Darnell T, et al. An instrument to measure coronal emission line polarization. Sol Phys, 2008, 247: 411–428

    Google Scholar 

  49. Tomczyk S, McIntosh S W, Keil S L, et al. Alfven waves in the solar corona. Science, 2007, 317: 1192

    Google Scholar 

  50. Tomczyk S, McIntosh S W. Time-distance seismology of the solar corona with CoMP. Astrophys J, 2009, 697: 1384–1391

    Google Scholar 

  51. Liu J J, McIntosh S W, De Moortel I, et al. On the parallel and perpendicular propagating motions visible in polar plumes: An incubator for (fast) solar wind acceleration? Astrophys J, 2015, 806: 273

    Google Scholar 

  52. Morton R J, Tomczyk S, Pinto R. Investigating Alfvenic wave propagation in coronal open-field regions. Nat Commun, 2015, 6: 7813

    Google Scholar 

  53. Morton R J, Tomczyk S, Pinto R. A global view of velocity fluctuations in the corona below 1.3 R with CoMP. Astrophys J, 2016, 828: 89

    Google Scholar 

  54. Morton R J, Weberg M J, McLaughlin J A. A basal contribution from p-modes to the Alfvenic wave flux in the Sun’s corona. Nat Astron, 2019, 3: 223

    Google Scholar 

  55. Magyar N, Van Doorsselaere T. Assessing the capabilities of dynamic coronal seismology of Alfvenic waves through forward modeling. Astrophys J, 2018, 856: 144

    Google Scholar 

  56. Long D M, Valori G, Pérez-Suárez D, et al. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology. Astron Astrophys, 2017, 603: A101

    Google Scholar 

  57. Yang Z, Bethge C, Tian H, et al. Global maps of the magnetic field in the solar corona. Science, 2020, 369: 694

    Google Scholar 

  58. Tian H, Tomczyk S, McIntosh S W, et al. Observations of coronal mass ejections with the coronal multichannel polarimeter. Sol Phys, 2013, 288: 637–650

    Google Scholar 

  59. Lemen J R, Title A M, Akin D J, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 17–40

    Google Scholar 

  60. McIntosh S W, De Pontieu B, Tomczyk S. A coherence-based approach for tracking waves in the solar corona. Sol Phys, 2008, 252: 321–348

    Google Scholar 

  61. Dere K P, Landi E, Mason H E, et al. CHIANTI—An atomic database for emission lines. I. Wavelengths greater than 50 Å. Astron Astrophys Suppl Ser, 1997, 125: 149–173

    Google Scholar 

  62. Dere K P, Del Zanna G, Young P R, et al. CHIANTI—An atomic database for emission lines. XV. Version 9, improvements for the X-ray satellite lines. Astrophys J Suppl Ser, 2019, 241: 22

    Google Scholar 

  63. Young P R, Del Zanna, G, Landi E, et al. CHIANTI—An atomic database for emission lines. VI. Proton rates and other improvements. Astrophys J Suppl Ser, 2003, 144: 135–152

    Google Scholar 

  64. Tomczyk S. Measurement errors for coronal magnetic field parameters. Coronal Solar Magnetism Observatory Technical Note No. 1, 2015

  65. Van Vleck J H. On the quantum theory of the polarization resonance radiation in magnetic fields. Proc Natl Acad Sci, 1925, 11: 612

    MATH  Google Scholar 

  66. Tiwari A K, Morton R J, Regnier S, et al. Dam** of propagating kink waves in the solar corona. Astrophys J, 2019, 876: 106

    Google Scholar 

  67. Kumari A, Ramesh R, Kathiravan C, et al. Direct estimates of the solar coronal magnetic field using contemporaneous extreme-ultraviolet, radio, and white-light observations. Astrophys J, 2019, 881: 24

    Google Scholar 

  68. Newkirk G Jr. The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys J, 1961, 133: 983

    Google Scholar 

  69. Leblanc Y, Leroy J L, Pecantet P. Quiet corona density model for the last maximum of solar activity. Sol Phys, 1973, 31: 343–350

    Google Scholar 

  70. Doschek G A, Warren H P, Laming J M, et al. Electron densities in the solar polar coronal holes from density-sensitive line ratios of Si viii and S x. Astrophys J, 1997, 482: L109–L112

    Google Scholar 

  71. Del Zanna G. Extreme ultraviolet spectroscopy of the solar corona. Dissertation for Doctoral Degree. Preston: University of Central Lancashire, 1999

    Google Scholar 

  72. Tripathi D, Mason H E, Dwivedi B N, et al. Active region loops: Hinode/Extreme-ultraviolet imaging spectrometer observations. Astrophys J, 2009, 694: 1256–1265

    Google Scholar 

  73. O’Dwyer B, Del Zanna G, Mason H E, et al. Hinode extreme-ultraviolet imaging spectrometer observations of a limb active region Astron Astrophys, 2011, 525: A137

    Google Scholar 

  74. Goossens M, Terradas J, Andries J, et al. On the nature of kink MHD waves in magnetic flux tubes. Astron Astrophys, 2009, 503: 213–223

    MATH  Google Scholar 

  75. Goossens M, Andries J, Soler R, et al. Surface Alfvesn waves in solar flux tubes. Astrophys J, 2012, 753: 111

    Google Scholar 

  76. McIntosh S W, De Pontieu B, Carlsson M, et al. Alfvesnic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature, 2011, 475: 477

    Google Scholar 

  77. Landi E, Habbal S R, Tomczyk S. Coronal plasma diagnostics from ground-based observations. J Geophys Res Space Phys, 2016, 121: 8237–8249

    Google Scholar 

  78. Tritschler A, Rimmele T R, Berukoff S, et al. Daniel K. Inouye solar telescope: High-resolution observing of the dynamic Sun. Astron Nachrichten, 2016, 337: 1064

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tian.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11825301, 11790304(11790300)), the Strategic Priority Research Program of CAS (Grant No. XDA17040507), and Grant No. 1916321TS00103201. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement (Grant No. 1852977). CoMP is an instrument operated by the National Center for Atmospheric Research. AIA is an instrument on SDO, a mission of NASAs Living With a Star Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Tian, H., Tomczyk, S. et al. Map** the magnetic field in the solar corona through magnetoseismology. Sci. China Technol. Sci. 63, 2357–2368 (2020). https://doi.org/10.1007/s11431-020-1706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1706-9

Navigation