Log in

Optimal ordering and production decisions for remanufacturing firms with carbon options under demand uncertainty

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We study the role of carbon options in mitigating the risk of demand uncertainty for an emissions-dependent firm that conducts remanufacturing and then selling to consumers. Specifically, we first investigate the carbon option-void scenario as a benchmark where no carbon options are available under demand uncertainty in the emission trading market. Subsequently, the unidirectional carbon option scenario and the bidirectional carbon option scenario are introduced as alternatives to purchase carbon emission quotas. Through comparing the optimal ordering and production decisions under different scenarios, we demonstrate the positive role of carbon option contracts in improving the firm’s profits and, more importantly, co** with demand uncertainty. Among other results, we observe that the bidirectional carbon option contracts perform better than the unidirectional carbon option contracts. Under the two option-based scenarios, the firm is more sensitive to the carbon option price than the exercised price. In addition, the firm has incentives to remanufacture with a relatively high remanufacturing rate and a loose carbon emission policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Funding

This research was supported by the National Natural Science Foundation of China (NSFC), the Research Fund [grant numbers 71971058].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. **aoyu Ma (first author): conceptualization, methodology, writing—original draft; Weida Chen (corresponding author): supervision, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Weida Chen.

Ethics declarations

Ethics approval

The work does not involve any hazards, such as the use of animal or human subjects’ issue.

Consent to participant

All authors have informed and consented to participation.

Consent to publish

All authors have informed and consented to publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Eyup Dogan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of lemma 1

From Eq. (2), we derive that \(\frac{{\partial }^{2}{\pi }_{m}\left({q}_{b}\right)}{\partial {{q}_{b}}^{2}}=-\frac{\left(p-{c}_{R}+g\right){\varepsilon }^{2}}{{\left(e-k\right)}^{2}}f\left(\frac{\varepsilon {q}_{b}}{e-k}\right)<0\). Thus, \({\pi }_{m}\left({q}_{b}\right)\) is concave in \({q}_{b}\), and then, there exists a unique \({{q}_{b}^{\text{None}}}^{*}\) that maximizes \({\pi }_{m}\left({q}_{b}\right)\).

Proof of proposition 1

From Eq. (2), let \(\frac{\partial {\pi }_{m}\left({q}_{b}\right)}{\partial {q}_{b}}=\frac{\left(p-{c}_{R}+g\right)\varepsilon }{e-k}-\frac{\left(p-{c}_{R}+g\right)\varepsilon }{e-k}F\left(\frac{\varepsilon {q}_{b}}{e-k}\right)-{\omega }_{b}=0\); then, we can obtain that \({{q}_{b}^{\text{None}}}^{*}=\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{\text{None}}\right)\), where \({a}^{\text{None}}=\frac{p-{c}_{R}+g-{\omega }_{b}\left(e-k\right)/\varepsilon }{p-{c}_{R}+g}\).

Proof of corollary 1

According to proposition 1, we can obtain that \(\frac{\partial {{q}_{b}^{\text{None}}}^{*}}{\partial {\omega }_{b}}=-\frac{{\left(e-k\right)}^{2}}{{\varepsilon }^{2}\left(p-{c}_{R}+g\right)f\left({a}^{\text{None}}\right)}<0\) holds.

Proof of lemma 2

From Eq. (4), we derive that \(\frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {Q}^{2}}=-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right)}{{\left(e-k\right)}^{2}}f\left(\frac{\varepsilon Q}{e-k}\right)<0\), \(\frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {{q}_{b}}^{2}}=-\frac{{\omega }_{e}\varepsilon }{e-k}f\left(\frac{\varepsilon {q}_{b}}{e-k}\right)<0\), and \(\frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial Q\partial {q}_{b}}=\frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {q}_{b}\partial Q}=0\). Furthermore, \({H}^{UO}=\left|\begin{array}{cc}\frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {Q}^{2}}& \frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial Q\partial {q}_{b}}\\ \frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {q}_{b}\partial Q}& \frac{{\partial }^{2}{\pi }_{m}\left(Q,{q}_{b}\right)}{\partial {{q}_{b}}^{2}}\end{array}\right|>0\) can be derived. Obviously, the Hessian matrix of \({\pi }_{m}\left(Q,{q}_{b}\right)\) is negative definite. Hence, \({\pi }_{m}\left(Q,{q}_{b}\right)\) is jointly concave in \(Q\) and \({q}_{b}\), and the there exists a unique \({Q}^{UO*}\) and \({{q}_{b}^{UO}}^{*}\) that maximize \({\pi }_{m}\left(Q,{q}_{b}\right)\).

Proof of proposition 2

From Eq. (4), let \(\frac{\partial {\pi }_{m}}{\partial Q}=\frac{\left(p-{c}_{R}+g\right)\varepsilon }{e-k}-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right)\varepsilon }{e}F\left(\frac{\varepsilon Q}{e-k}\right)-\left({\omega }_{e}+{\omega }_{o}\right)=0\) and \(\frac{\partial {\pi }_{m}}{\partial {q}_{b}}=-{\omega }_{e}F\left(\frac{\varepsilon {q}_{b}}{e-k}\right)-{\omega }_{b}+\left({\omega }_{e}+{\omega }_{o}\right)=0\), we can obtain that \({{q}_{b}^{UO}}^{*}=\frac{e-k}{\varepsilon }{F}^{-1}\left({b}^{UO}\right)\), \({Q}^{UO*}=\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{UO}\right)\), and \({{q}_{o}^{UO}}^{*}={Q}^{UO*}-{{q}_{b}^{UO}}^{*}=\frac{e-k}{\varepsilon }\left[{F}^{-1}\left({a}^{UO}\right)-{F}^{-1}\left({b}^{UO}\right)\right]\), where \({a}^{UO}=\frac{p-{c}_{R}+g-\left({\omega }_{e}+{\omega }_{o}\right)\left(e-k\right)/\varepsilon }{p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon }\), and \({b}^{UO}=\frac{{\omega }_{e}+{\omega }_{o}-{\omega }_{b}}{{\omega }_{e}}\).

Proof of corollary 2

According to proposition 2, we can obtain that (i) \(\frac{\partial {{q}_{b}^{UO}}^{*}}{\partial {\omega }_{b}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({b}^{UO}\right)}{\partial {\omega }_{b}}=-\frac{e-k}{{\varepsilon \omega }_{e}f\left({b}^{UO}\right)}<0\), \(\frac{\partial {{q}_{b}^{UO}}^{*}}{\partial {\omega }_{o}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({b}^{UO}\right)}{\partial {\omega }_{o}}=\frac{e-k}{{\varepsilon \omega }_{e}f\left({b}^{UO}\right)}>0\), \(\frac{\partial {{q}_{b}^{UO}}^{*}}{\partial {\omega }_{e}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({b}^{UO}\right)}{\partial {\omega }_{e}}=\frac{\left(e-k\right)\left({\omega }_{b}-{\omega }_{o}\right)}{{{\varepsilon \omega }_{e}}^{2}f\left({b}^{UO}\right)}>0\).

(ii) \(\frac{\partial {Q}^{UO*}}{\partial {\omega }_{b}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{UO}\right)}{\partial {\omega }_{b}}=0\), \(\frac{\partial Q^{UO\ast}}{\partial\omega_o}=\frac{\frac{e-k}\varepsilon F^{-1}\left(a^{UO}\right)}{\partial\omega_o}=-\frac{\left(e-k\right)^2}{\left[\varepsilon^2\left(p-c_R+g\right)-{\varepsilon\omega}_e\left(e-k\right)\right]f\left(a^{UO}\right)}<0\), \(\frac{\partial Q^{UO\ast}}{\partial\omega_e}=\frac{\frac{e-k}\varepsilon F^{-1}\left(a^{UO}\right)}{\partial\omega_e}=-\frac{\omega_o\left(e-k\right)^3}{\varepsilon\left[\varepsilon\left(p-c_R+g\right)-\omega_e\left(e-k\right)\right]^2f\left(a^{UO}\right)}<0\).

Proof of lemma 3

From Eq. (6), we derive that \(\frac{{\partial }^{2}{\pi }_{m}\left({q}_{b},{q}_{o}\right)}{\partial {{q}_{b}}^{2}}=\frac{{\partial }^{2}{\pi }_{m}\left({q}_{b},{q}_{o}\right)}{\partial {{q}_{o}}^{2}}=-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right){\varepsilon }^{2}}{{\left(e-k\right)}^{2}}f\left(\frac{\varepsilon \left({q}_{b}+{q}_{o}\right)}{e-k}\right)-\frac{{\omega }_{e}\varepsilon }{e-k}f\left(\frac{\varepsilon \left({q}_{b}-{q}_{o}\right)}{e-k}\right)<0\), \(\frac{{\partial }^{2}{\pi }_{m}\left({q}_{b},{q}_{o}\right)}{\partial {q}_{b}\partial {q}_{o}}=\frac{{\partial }^{2}{\pi }_{m}\left({q}_{b},{q}_{o}\right)}{\partial {q}_{o}\partial {q}_{b}}=-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right){\varepsilon }^{2}}{{\left(e-k\right)}^{2}}f\left(\frac{\varepsilon \left({q}_{b}+{q}_{o}\right)}{e-k}\right)+\frac{{\omega }_{e}\varepsilon }{e-k}f\left(\frac{\varepsilon \left({q}_{b}-{q}_{o}\right)}{e-k}\right)\). Let \(A=\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right){\varepsilon }^{2}}{{\left(e-k\right)}^{2}}f\left(\frac{\varepsilon \left({q}_{b}+{q}_{o}\right)}{e-k}\right)\), \(B=\frac{{\omega }_{e}\varepsilon }{e-k}f\left(\frac{\varepsilon \left({q}_{b}-{q}_{o}\right)}{e-k}\right)\). Furthermore, we obtain \({H}^{BO}=\left|\begin{array}{cc}-A-B& -A+B\\ -A+B& -A-B\end{array}\right|\), with \({H}_{1}<0\), and \({H}_{2}=4AB>0\). Obviously, the Hessian matrix of \({\pi }_{m}\left({q}_{b},{q}_{o}\right)\) is negative definite. Hence, \({\pi }_{m}\left({q}_{b},{q}_{o}\right)\) is jointly concave in \({q}_{b}\) and \({q}_{o}\), and the there exists a unique \({{q}_{b}^{BO}}^{*}\) and \({{q}_{o}^{BO}}^{*}\) that maximize \({\pi }_{m}\left({q}_{b},{q}_{o}\right)\).

Proof of proposition 3

From Eq. (6), let \(\frac{\partial {\pi }_{m}}{\partial {q}_{b}}=\frac{\left(p-{c}_{R}+g\right)\varepsilon }{e-k}-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right)\varepsilon }{e-k}F\left(\frac{\varepsilon \left({q}_{b}+{q}_{o}\right)}{e-k}\right)-{\omega }_{e}F\left(\frac{\varepsilon \left({q}_{b}-{q}_{o}\right)}{e-k}\right)-{\omega }_{b}=0\) and \(\frac{\partial {\pi }_{m}}{\partial {q}_{o}}=\frac{\left(p-{c}_{R}+g\right)\varepsilon }{e-k}-\frac{\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right)\varepsilon }{e-k}F\left(\frac{\varepsilon \left({q}_{b}+{q}_{o}\right)}{e-k}\right)+{\omega }_{e}F\left(\frac{\varepsilon \left({q}_{b}-{q}_{o}\right)}{e-k}\right)-\left({\omega }_{o}+{\omega }_{e}\right)=0\), we can obtain that \({{q}_{b}^{BO}}^{*}=\frac{e-k}{2\varepsilon }\left[{F}^{-1}\left({a}^{BO}\right)+{F}^{-1}\left({b}^{BO}\right)\right]\), \({{q}_{o}^{BO}}^{*}=\frac{e-k}{2\varepsilon }\left[{F}^{-1}\left({a}^{BO}\right)-{F}^{-1}\left({b}^{BO}\right)\right]\), and \({Q}^{BO*}={{q}_{b}^{BO}}^{*}+{{q}_{o}^{BO}}^{*}=\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{BO}\right)\), where \({a}^{BO}=\frac{2\left(p-{c}_{R}+g\right)-\left({\omega }_{b}+{\omega }_{e}+{\omega }_{o}\right)\left(e-k\right)/\varepsilon }{2\left(p-{c}_{R}+g-{\omega }_{e}\left(e-k\right)/\varepsilon \right)}\), and \({b}^{BO}=\frac{{\omega }_{e}+{\omega }_{o}-{\omega }_{b}}{2{\omega }_{e}}\).

Proof of corollary 4

According to proposition 3, for given \({\omega }_{b}>{{\omega }_{b}}^{*}\), we can obtain that (i) \(\frac{\partial {{q}_{b}^{BO}}^{*}}{\partial {\omega }_{b}}=-\frac{\left(e-k\right)}{4\varepsilon }\left[\frac{\left(e-k\right)}{\left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]f\left({a}^{BO}\right)}+\frac{1}{ef\left({b}^{BO}\right)}\right]<0\), \(\frac{\partial {{q}_{o}^{BO}}^{*}}{\partial {\omega }_{o}}=-\frac{\left(e-k\right)}{4\varepsilon }\left[\frac{\left(e-k\right)}{\left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]f\left({a}^{BO}\right)}+\frac{1}{ef\left({b}^{BO}\right)}\right]<0\), \(\frac{\partial {{q}_{b}^{BO}}^{*}}{\partial {\omega }_{e}}=\frac{\left(e-k\right)}{4\varepsilon }\left[\frac{\left(e-k\right)\left[\varepsilon \left(p-{c}_{R}+g\right)-\left({\omega }_{b}+{\omega }_{o}\right)\left(e-k\right)\right]}{{\left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]}^{2}f\left({a}^{BO}\right)}+\frac{{\omega }_{b}-{\omega }_{o}}{{e}^{2}f\left({b}^{BO}\right)}\right]>0\).

(ii) \(\frac{\partial {Q}^{BO*}}{\partial {\omega }_{b}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{BO}\right)}{\partial {\omega }_{b}}=-\frac{{\left(e-k\right)}^{2}}{2\varepsilon \left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]f\left({a}^{BO}\right)}<0\), \(\frac{\partial {Q}^{BO*}}{\partial {\omega }_{o}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{BO}\right)}{\partial {\omega }_{o}}=-\frac{{\left(e-k\right)}^{2}}{2\varepsilon \left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]f\left({a}^{BO}\right)}<0\), \(\frac{\partial {Q}^{BO*}}{\partial {\omega }_{e}}=\frac{\frac{e-k}{\varepsilon }{F}^{-1}\left({a}^{BO}\right)}{\partial {\omega }_{e}}=\frac{{\left(e-k\right)}^{2}\left[\varepsilon \left(p-{c}_{R}+g\right)-\left({\omega }_{b}+{\omega }_{o}\right)\left(e-k\right)\right]}{2\varepsilon {\left[\varepsilon \left(p-{c}_{R}+g\right)-{\omega }_{e}\left(e-k\right)\right]}^{2}f\left({a}^{BO}\right)}>0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Chen, W. Optimal ordering and production decisions for remanufacturing firms with carbon options under demand uncertainty. Environ Sci Pollut Res 30, 34378–34393 (2023). https://doi.org/10.1007/s11356-022-24335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24335-4

Keywords

Navigation