Log in

Advantages and limits to copper phytoextraction in vineyards

  • ECOTOX, Aquatic and Terrestrial Ecotoxicology Considering the Soil: Water Continuum in the Anthropocene Context
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Copper (Cu) contamination of soils may alter the functioning and sustainability of vineyard ecosystems. Cultivating Cu-extracting plants in vineyard inter-rows, or phytoextraction, is one possible way currently under consideration in agroecology to reduce Cu contamination of vineyard topsoils. This option is rarely used, mainly because Cu phytoextraction yields are too low to significantly reduce contamination due to the relatively “low” phytoavailability of Cu in the soil (compared to other trace metals) and its preferential accumulation in the roots of most extracting plants. This article describes the main practices and associated constraints that could theoretically be used to maximize Cu phytoextraction at field scale, including the use of Cu-accumulating plants grown (i) with acidifying plants (e.g., leguminous plants), and/or (ii) in the presence of acidifying fertilizers (ammonium, elemental sulfur), or (iii) with soluble “biochelators” added to the soil such as natural humic substances or metabolites produced by rhizospheric bacteria such as siderophores, in the inter-rows. This discussion article also provides an overview of the possible ways to exploit Cu-enriched biomass, notably through ecocatalysis or biofortification of animal feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable

References

  • Andreazza R, Bortolon L, Pieniz S, Camargo FAO (2013) Use of high-yielding bioenergy plant castor bean (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils. Pedosphere 23:651–661

    Article  CAS  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs DD, Lambais MR, Camargo FAO (2011) Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Biol Trace Elem Res 143:1729–1739

    Article  CAS  Google Scholar 

  • Andreazza R, Okeke BC, Lambais MR, Bortolon L, de Melo GWB, Camargo FAO (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81:1149–1154

    Article  CAS  Google Scholar 

  • Andrivon D, Bardin M, Bertrand C, Brun L, Daire X, Fabre F, Gary C, Montarry J, Nicot P, Reignault P, Tamm L, Savini I (2017) Peut-on se passer du cuivre en protection des cultures biologiques ? INRA, Synthèse du rapport d’expertise scientifique collective, 66 p

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Sulce S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediat 17:117–127

    Article  CAS  Google Scholar 

  • Baqi Y (2021) Recent advances in microwave-assisted copper-catalyzed cross-coupling reactions. Catalysts 11:46–81

    Article  CAS  Google Scholar 

  • Barbaroux R, Mercier G, Blais JF, Morel JL, Simonnot MO (2011) A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Purif Technol 83:57–65

    Article  CAS  Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119

    Article  CAS  Google Scholar 

  • Bert V (2013) Les phytotechnologies appliquées aux sites et sols pollués. EDP Sciences, Paris

    Google Scholar 

  • Bian XG, Cui J, Tang BP, Yang L (2018) Chelant-induced phytoextraction of heavy metals from contaminated soils: a review. Pol. J Environ Stud 27:2417–2424

    Article  CAS  Google Scholar 

  • Borggaard OK, Hansen HCB, Holm PE, Jensen JK, Rasmussen SB, Sabiene N, Steponkaite L, Strobel BW (2009) Experimental assessment of using soluble humic substances for remediation of heavy metal polluted soils. Soil Sediment Contam 18:369–382

    Article  CAS  Google Scholar 

  • Borggaard OK, Holm PE, Strobel BW (2019) Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review. Geoderma 343:235–246

    Article  CAS  Google Scholar 

  • Bravin MN, Garnier C, Lenoble V, Gérard F, Dudal Y, Hinsinger P (2012) Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim Cosmochim Ac 84:256–268

    Article  CAS  Google Scholar 

  • Bravin MN, Le Merrer B, Denaix L, Schneider A, Hinsinger P (2010) Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil’s ability to supply copper. Plant Soil 331:91–104

    Article  CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102

    Google Scholar 

  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Carrio-Segui A, Romero P, Curie C, Mari S, Penarrubia L (2019) Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilization. Scientific Rep-UK 9:4648

    Article  CAS  Google Scholar 

  • Celardin F, Trouillet C, Tisiot R (2003) pH dependence of copper adsorption in vineyard soils of Geneva. Environ Chem Lett 1:225–227

  • Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238

    Article  CAS  Google Scholar 

  • Chen WY, Li HX (2018) Cost-effectiveness analysis for soil heavy metal contamination treatments. Water Air Soil Poll 229:126

    Article  CAS  Google Scholar 

  • Chour Z, Laubie B, Morel JL, Tang YT, Qiu RL, Simonnot MO, Muhr L (2018) Recovery of rare earth elements from Dicranopteris dichotoma by an enhanced ion exchange leaching process. Chem Eng Process 130:208–213

    Article  CAS  Google Scholar 

  • Chour Z, Laubie B, Morel JL, Tang YT, Simonnot MO, Muhr L (2020) Basis for a new process for producing REE oxides from Dicranopteris linearis. J Environ Chem Eng 8:103961

    Article  CAS  Google Scholar 

  • Clave G, Garel C, Poullain C, Renard BL, Olszewski TK, Lange B, Shutcha M, Faucon MP, Grison C (2016a) Ullmann reaction through ecocatalysis: insights from bioresource and synthetic potential. RSC Adv 6:59550–59564

    Article  CAS  Google Scholar 

  • Clave G, Garoux L, Boulanger C, Hesemann P, Grison C (2016b) Ecological recycling of a bio-based catalyst for Cu Click reaction: a new strategy for a greener sustainable catalysis. Chemistry Select 1:1410–1416

    CAS  Google Scholar 

  • Cornu JY, Elhabiri M, Ferret C, Geoffroy VA, Jezequel K, Leva Y, Lollier M, Schalk IJ, Lebeau T (2014) Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere 103:212–219

    Article  CAS  Google Scholar 

  • Cornu JY, Huguenot D, Jezequel K, Lollier M, Lebeau T (2017) Bioremediation of copper-contaminated soils by bacteria. World J Microb Biot 33:26

    Article  CAS  Google Scholar 

  • Cornu JY, Randriamamonjy S, Gutierrez M, Rocco K, Gaudin P, Ouerdane L, Lebeau T (2019) Copper phytoavailability in vineyard topsoils as affected by pyoverdine supply. Chemosphere 236:124347

    Article  CAS  Google Scholar 

  • Cui HB, Fan YC, Yang J, Xu L, Zhou J, Zhu ZQ (2016) In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil. Chemosphere 161:233–241

    Article  CAS  Google Scholar 

  • Curtin D, Trolove S (2013) Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Res 51:494–502

    Article  CAS  Google Scholar 

  • De Conti L, Ceretta CA, Melo GWB, Tiecher TL, Silva LOS, Garlet LP, Mimmo T, Cesco S, Brunetto G (2019) Intercrop** of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216:147–156

    Article  CAS  Google Scholar 

  • De Corato U (2020) Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: a review under the perspective of a circular economy. Sci Total Environ 738:139840

    Article  CAS  Google Scholar 

  • Delas J (1963) La toxicité du cuivre accumulé dans les sols. Agrochimica 7:257–288

    Google Scholar 

  • Deng L, Li Z, Wang J, Liu HY, Li N, Wu LH, Hu PJ, Luo YM, Christie P (2016) Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Int J Phytoremediat 18:134–140

    Article  CAS  Google Scholar 

  • Dheer D, Singh V, Shankar R (2017) Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg Chem 71:30–54

    Article  CAS  Google Scholar 

  • Dijkshoorn W, Lampe J, Vanbroekhoven L (1983) The effect of soil pH and chemical form of nitrogen fertilizer on heavy-metal contents in ryegrass. Fert Res 4:63–74

    Article  CAS  Google Scholar 

  • Ding XH, Ma W, Huang XM, Guo W, Wang RQ, Li YC, Dai JL (2018) Characteristics of copper sorption by various agricultural soils in China and the effect of exogenic dissolved organic matter on the sorption. Soil Sediment Contam 27:311–328

    Article  CAS  Google Scholar 

  • Duplay J, Semhi K, Errais E, Imfeld G, Babcsanyi I, Perrone T (2014) Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices. Geoderma 230:318–328

    Article  CAS  Google Scholar 

  • Eijsackers H, Beneke P, Maboeta M, Louw JPE, Reinecke AJ (2005) The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotox Environ Safe 62:99–111

    Article  CAS  Google Scholar 

  • EU (Commission Implementing Regulation) 2018/1039 of 23 July 2018 concerning the authorisation of copper(II) diacetate monohydrate, copper(II) carbonate dihydroxy monohydrate, copper(II) chloride dihydrate, copper(II) oxide, copper(II) sulphate pentahydrate, copper(II) chelate of amino acids hydrate, copper(II) chelate of protein hydrolysates, copper(II) chelate of glycine hydrate (solid) and copper(II) chelate of glycine hydrate (liquid) as feed additives for all animal species and amending Regulations (EC) No 1334/2003, (EC) No 479/2006 and (EU) No 349/2010 and Implementing Regulations (EU) No 269/2012, (EU) No 1230/2014 and (EU) 2016/2261.

  • EU (Commission Implementing Regulation) 2018/1981 of 13 December 2018 renewing the approval of the active substances copper compounds, as candidates for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011.

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Fässler E, Robinson BH, Stauffer W, Gupta SK, Papritz A, Schulin R (2010) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agr Ecosyst Environ 136:49–58

    Article  CAS  Google Scholar 

  • Fernandez-Calvino D, Soler-Rovira P, Polo A, Diaz-Ravina M, Arias-Estevez M, Plaza C (2010) Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol Biochem 42:2119–2127

    Article  CAS  Google Scholar 

  • Field HR, Whitaker AH, Henson JA, Duckworth OW (2019) Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits. Sci Total Environ 697:134111

    Article  CAS  Google Scholar 

  • Ginocchio R, Rodriguez PH, Badilla-Ohlbaum R, Allen HE, Lagos GE (2002) Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environ Toxicol Chem 21:1736–1744

    Article  CAS  Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the Environment. John Wiley & Sons, New York, pp 15–31

    Google Scholar 

  • Goswami S, Das S (2016) Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotox Environ Safe 126:211–218

    Article  CAS  Google Scholar 

  • Guo ZQ, Liu ZZ, Wang XH, Liu WR, Jiang R, Cheng RY, She GM (2012) Elsholtzia: phytochemistry and biological activities. Chem Cent J 6:147

    Article  CAS  Google Scholar 

  • He ZL, Zhang M, Yang XE, Stoffella PJ (2006) Release behavior of copper and zinc from sandy soils. Soil Sci Soc Am J 70:1699–1707

    Article  CAS  Google Scholar 

  • Hechelski M, Ghinet A, Louvel B, Dufrenoy P, Rigo B, Daich A, Waterlot C (2018) From conventional Lewis acids to heterogeneous montmorillonite K10: eco-friendly plant-based catalysts used as green Lewis acids. ChemSusChem 11:1249–1277

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Huguenot D, Bois P, Cornu JY, Jezequel K, Lollier M, Lebeau T (2015) Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: effect of bioaugmentation and phytoextraction. Environ Sci Pollut Res 22:721–732

    Article  CAS  Google Scholar 

  • Jalali J, Gaudin P, Capiaux H, Ammar E, Lebeau T (2019) Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants. Ecotox Environ Safe 174:12–25

    Article  CAS  Google Scholar 

  • Jan N, Andrabi KI, John R (2017) Calendula officinalis - an important medicinal plant with potential biological properties. Proc Indian Natn Sci Acad 83:769–787

    Google Scholar 

  • Jondreville C, Revy PS, Jaffrezic A, Dourmad JY (2002) Le cuivre dans l’alimentation du porc : oligoélément essentiel, facteur de croissance et risque potentiel pour l’homme et l’environnement. INRA Prod Anim 15:247–265

    Article  CAS  Google Scholar 

  • Kah M, Navarro D, Kookana RS, Kirby JK, Santra S, Ozcan A, Kabiri S (2019) Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Env Chem 16:401–410

    Article  CAS  Google Scholar 

  • Karimi B, Masson V, Guilland C, Leroy E, Pellegrinelli S, Giboulot E, Maron PA, Ranjard L (2021) Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Env Chem Let. https://doi.org/10.1007/s10311-020-01155-x

  • Khalil MA, Abdel-Lateif HM, Bayoumi BM, van Straalen NM (1996) Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Appl Soil Ecol 4:213–219

    Article  Google Scholar 

  • Kissel DE, Bock BR, Ogles CZ (2020) Thoughts on acidification of soils by nitrogen and sulfur fertilizers. Agrosyst Geosci Environ 3:e20060

    Article  Google Scholar 

  • Kolbas A, Herzig R, Marchand L, Maalouf JP, Kolbas N, Mench M (2020) Field evaluation of one Cu-resistant somaclonal variant and two clones of tobacco for copper phytoextraction at a wood preservation site. Environ Sci Pollut Res 27:27831–27848

    Article  CAS  Google Scholar 

  • Komarek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36:138–151

    Article  CAS  Google Scholar 

  • Krämer U, Clemens S (2006) Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamás M, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification from microbes to man. Springer-Verlag, Berlin, pp 214–272

    Google Scholar 

  • Krishnamurti GSR, Naidu R (2002) Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ Sci Technol 36:2645–2651

    Article  CAS  Google Scholar 

  • Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R (2021) Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262:127810

    Article  CAS  Google Scholar 

  • Küpper H, Gotz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151:702–714

    Article  CAS  Google Scholar 

  • Lange B, Faucon MP, Meerts P, Shutcha M, Mahy G, Pourret O (2014) Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 379:275–287

    Article  CAS  Google Scholar 

  • Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551

    Article  CAS  Google Scholar 

  • Lejon DPH, Martins JMF, Leveque J, Spadini L, Pascault N, Landry D, Milloux MJ, Nowak V, Chaussod R, Ranjard L (2008) Copper dynamics and impact on microbial communities in soils of variable organic status. Environ Sci Technol 42:2819–2825

    Article  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Bioch 48:673–682

    Article  CAS  Google Scholar 

  • Liao MT, Hedley MJ, Woolley DJ, Brooks RR, Nichols MA (2000) Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. Plant Soil 221:135–142

    Article  CAS  Google Scholar 

  • Liu Y, Zhuang P, Li ZA, Zou B, Wang G, Li NY, Qiu J (2013) Effects of fertiliser and intercrop** on cadmium uptake by maize. Chem Ecol 29:489–500

    Article  CAS  Google Scholar 

  • Mackie KA, Muller T, Kandeler E (2012) Remediation of copper in vineyards: a mini review. Environ Pollut 167:16–26

    Article  CAS  Google Scholar 

  • Mackie KA, Schmidt HP, Muller T, Kandeler E (2014) Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. Sci Total Environ 500:34–43

    Article  CAS  Google Scholar 

  • Mallmann FJK, Rheinheimer DD, Ceretta CA, Cella C, Minella JPG, Guma RL, Filipovic V, van Oort F, Simunek J (2014) Soil tillage to reduce surface metal contamination - model development and simulations of zinc and copper concentration profiles in a pig slurry-amended soil. Agr Ecosyst Environ 196:59–68

    Article  Google Scholar 

  • Michaud AM, Bravin MN, Galleguillos M, Hinsinger P (2007) Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 298:99–111

    Article  CAS  Google Scholar 

  • Miotto A, Ceretta CA, Girotto E, Trentin G, Kaminski J, De Conti L, Moreno T, Elena B, Brunetto G (2017) Copper accumulation and availability in sandy, acid, vineyard soils. Commun Soil Sci Plan 48:1167–1183

    Article  CAS  Google Scholar 

  • Nachtigall GR, Nogueiro RC, Alleoni LRF, Cambri MA (2007) Copper concentration of vineyard soils as a function of pH variation and addition of poultry litter. Braz Arch Biol Techn 50:941–948

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in develo** nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Norouzbahari M, Burgaz EV, Ercetin T, Fallah A, Foroumadi A, Firoozpour L, Sahin MF, Gazi M, Gulcan HO (2018) Design, synthesis and characterization of novel urolithin derivatives as cholinesterase inhibitor agents. Lett Drug Des Discov 15:1131–1140

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  Google Scholar 

  • Olszewski TK, Adler P, Grison C (2019) Bio-based catalysts from biomass issued after decontamination of effluents rich in copper: an innovative approach towards greener copper-based catalysis. Catalysts 9:214

    Article  CAS  Google Scholar 

  • Oviedo C, Rodriguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quim. Nova 26:901–905

    Article  CAS  Google Scholar 

  • Perez-Rodriguez P, Paradelo M, Soto-Gomez D, Fernandez-Calvino D, Lopez-Periago JE (2015) Modeling losses of copper-based fungicide foliar sprays in wash-off under simulated rain. Int J Environ Sci Technol 12:661–672

    Article  CAS  Google Scholar 

  • Pietrzak U, Uren NC (2011) Remedial options for copper-contaminated vineyard soils. Soil Res 49:44–55

    Article  CAS  Google Scholar 

  • Printz B, Lutts S, Hausman JF, Sergeants K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:601

    Article  Google Scholar 

  • Reeves RD, van der Ent A, Baker AJM (2018) Global distribution and ecology of hyperaccumulator plants. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals. Springer, pp 75-92.

  • Rehman M, Liu LJ, Wang Q, Saleem MH, Bashir S, Ullah S, Peng DX (2019) Copper environmental toxicology, recent advances, and future outlook: a review. Environ Sci Pollut R 26:18003–18016

    Article  CAS  Google Scholar 

  • Richau KH, Schat H (2009) Intraspecific variation of nickel and zinc accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nicke1 hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  CAS  Google Scholar 

  • Sauve S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut 100:133–149

    Article  CAS  Google Scholar 

  • Schneider M, Keiblinger KM, Paumann M, Soja G, Mentler A, Golestani-Fard A, Retzmann A, Prohaska T, Zechmeister-Boltenstern S, Wenzel W, Zehetner F (2019) Fungicide application increased copper-bioavailability and impaired nitrogen fixation through reduced root nodule formation on alfalfa. Ecotoxicology 28:599–611

    Article  CAS  Google Scholar 

  • Schubert S, Schubert E, Mengel K (1990) Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field beans (Vicia faba). Plant Soil 124:239–244

    Article  CAS  Google Scholar 

  • Shaheen SM, Wang JX, Swertz AC, Feng XB, Bolan N, Rinklebe J (2019) Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environ Pollut 248:1059–1066

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166

    Article  CAS  Google Scholar 

  • Smith SR (1994) Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environ Pollut 85:321–327

    Article  CAS  Google Scholar 

  • Soler-Rovira P, Fernandez-Calvino D, Arias-Estevez M, Plaza C, Polo A (2013) Respiration parameters determined by the ISO-17155 method as potential indicators of copper pollution in vineyard soils after long-term fungicide treatment. Sci Total Environ 447:25–31

    Article  CAS  Google Scholar 

  • Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476

    Article  Google Scholar 

  • Tang RH, Erskine PD, Lilly R, van der Ent A (2020) The biogeochemistry of copper metallophytes in the Roseby Corridor (North-West Queensland, Australia). Chemoecology 31:19–30. https://doi.org/10.1007/s00049-020-00325-1

    Article  CAS  Google Scholar 

  • Tognacchini A, Rosenkranz T, van der Ent A, Machinet GE, Echevarria G, Puschenreiter M (2020) Nickel phytomining from industrial wastes: growing nickel hyperaccumulator plants on galvanic sludges. J Environ Manage 254:109798

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • van der Ent A, Reeves RD (2015) Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389:401–418

    Article  CAS  Google Scholar 

  • Viti C, Quaranta D, De Philippis R, Corti G, Agnelli A, Cuniglio R, Giovannetti L (2008) Characterizing cultivable soil microbial communities from copper fungicide-amended olive orchard and vineyard soils. World J Microb Biot 24:309–318

    Article  CAS  Google Scholar 

  • Wenger K, Kayser A, Gupta SK, Furrer G, Schulin R (2002) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sediment Contam 11:655–672

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Zeng FR, Ali S, Zhang HT, Ouyang YB, Qiu BY, Wu FB, Zhang GP (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 259:84–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Lorelei Boechat-Cazenave (Gironde Chamber of Agriculture) for providing the picture used in Figure 1, Laetitia Pinson-Gadais for her help with the design of Figure 2, and the two reviewers for their constructive comments that substantially improved the quality of the manuscript.

Funding

This work was financially supported by the Bordeaux wine inter-professional council (French acronym CIVB) under the EXTRACUIVRE project, by the “Pays de la Loire” regional council (France) under the OSUNA-POLLUSOLS project, by the French Agency for Environment and Energy Management (French acronym ADEME) under the VITALICUIVRE project, and by the French National Institute for Agriculture, Food and Environment (INRAE).

Author information

Authors and Affiliations

Authors

Contributions

JYC wrote the original draft of the manuscript. CW and TL reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jean-Yves Cornu.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornu, JY., Waterlot, C. & Lebeau, T. Advantages and limits to copper phytoextraction in vineyards. Environ Sci Pollut Res 29, 29226–29235 (2022). https://doi.org/10.1007/s11356-021-13450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13450-3

Keywords

Navigation