Log in

Coverage and network spectral efficiency analysis for UAV swarm under 3D beamforming in isolated regions

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Fifth-generation networks are facing coverage problems due to the vulnerability of millimeter-wave bands caused by blockage and penetration loss phenomena, resulting in shadow zones commonly called isolated regions (IRs). Unmanned aerial vehicles (UAVs) acting as aerial base stations, can be rapidly applied to provide communications coverage in IR. Existing research mainly adopts UAVs with conventional beamforming, but this scheme simply neglects the array gain in the vertical plane, and interference coordination becomes complicated. Considering a 3D beamforming approach that adjusts the tilt angle, this paper explores the coverage and network spectral efficiency (NSE) analysis using stochastic geometry, where UAVs are distributed as a binomial point process within a bounded circular area over the IR. Specifically, the association probability of an arbitrarily-located typical user in the finite region is computed based on the strongest averaged received power in line-of-sight/non-line-of-sight propagation. Furthermore, the signal-to-interference-plus-noise ratio coverage probability and NSE expressions are obtained under the hypothesis of Nakagami-m fading. Monte Carlo simulations are performed to illustrate the effectiveness of the proposed analysis method. Through the results we show the impact of antenna elevation on the coverage, the optimal tilt angle and the optimal number of simultaneously active UAVs to maximize performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun, H., Ma, C., Zhang, L., Li, J., Wang, X., Li, S., Quek, T. Q. (2023). Coverage analysis for cellular-connected random 3D mobile UAVs with directional antennas. IEEE Wireless Communications Letters

  2. **ao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y., Matthaiou, M., Karagiannidis, G. K., Björnson, E., Yang, K., Chih-Lin, I., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935.

    Article  Google Scholar 

  3. Nakamura, T., Nagata, S., Benjebbour, A., Kishiyama, Y., Hai, T., **aodong, S., Ning, Y., & Nan, L. (2013). Trends in small cell enhancements in LTE advanced. IEEE Communications Magazine, 51(2), 98–105.

    Article  Google Scholar 

  4. Gu , X., Zhang, G. (2023). A survey on UAV-assisted wireless communications: Recent advances and future trends. Computer Communications

  5. Wang, X., Zhang, H., Leung, V. C. (2018). Modeling and performance analysis of UAV-assisted cellular networks in isolated regions. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, pp. 1–6.

  6. Zeng, Y., Xu, X., & Zhang, R. (2018). Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Transactions on Wireless Communications, 17(4), 2233–2246.

    Article  Google Scholar 

  7. Cherif, N., Alzenad, M., Yanikomeroglu, H., & Yongacoglu, A. (2020). Downlink coverage and rate analysis of an aerial user in vertical heterogeneous networks (VHetNets). IEEE Transactions on Wireless Communications, 20(3), 1501–1516.

    Article  Google Scholar 

  8. Song, H.-L., Ko, Y.-C. (2021). Beam alignment for high-speed UAV via angle prediction and adaptive beam coverage. IEEE Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10185–10192

  9. Zhu, L., Zhang, J., **ao, Z., Cao, X., Wu, D. O., & **a, X.-G. (2019). 3-D beamforming for flexible coverage in millimeter-wave UAV communications. IEEE Wireless Communications Letters, 8(3), 837–840.

    Article  Google Scholar 

  10. Wu, F., Yang, D., **ao, L., Cuthbert, L. (2019). Energy consumption and completion time tradeoff in rotary-wing UAV enabled WPCN. IEEE Access, vol. 7, pp. 79617–79635

  11. Alkama, D., Ouamri, M. A., Alzaidi, M. S., Shaw, R. N., Azni, M., & Ghoneim, S. S. (2022). Downlink performance analysis in MIMO UAV-cellular communication with LOS/NLOS propagation under 3D beamforming. IEEE Access, 10, 6650–6659.

    Article  Google Scholar 

  12. Garcia-Rodriguez, A., Geraci, G., López-Pérez, D., Giordano, L. G., Ding, M., & Bjornson, E. (2019). The essential guide to realizing 5G-connected UAVs with massive MIMO. IEEE Communications Magazine, 57(12), 84–90.

    Article  Google Scholar 

  13. Sultan, Q., Khan, M. S., Cho, Y. S. (2020). Fast 3D beamforming technique for millimeter-wave cellular systems with uniform planar arrays. IEEE Access, vol. 8, pp. 123469–123482

  14. Oubbati, O. S., Atiquzzaman, M., Ahanger, T. A., Ibrahim, A. (2020). Softwarization of UAV networks: A survey of applications and future trends. IEEE Access, vol. 8, pp. 98073–98125

  15. Baianifar, M., Razavizadeh, S. M., Khavari-Moghaddam, S., Svensson, T. (2019). Effect of users height distribution on the coverage of mmWave cellular networks with 3D beamforming. IEEE Access, vol. 7, pp. 68091–68105

  16. Natarajan, J., & Rebekka, B. (2022). Stochastic geometry analysis of coverage probability in energy efficient dense heterogeneous network with sleep control mechanism. Physical Communication, 54, 101797.

    Article  Google Scholar 

  17. Bagherinejad, S., Bayanifar, M., Maleki, M. S., & Maham, B. (2022). Coverage probability of RIS-assisted mmWave cellular networks under blockages: A stochastic geometric approach. Physical Communication, 53, 101740.

    Article  Google Scholar 

  18. Qin, Y., Kishk, M. A., & Alouini, M.-S. (2022). Stochastic-geometry-based analysis of multipurpose UAVs for package and data delivery. IEEE Internet of Things Journal, 10(5), 4664–4676.

    Article  Google Scholar 

  19. Liu, Z., Zhu, H., Yuan, Y., Chan, K. Y., Yang, Y., & Guan, X. (2022). Maximizing lower bound of energy efficiency in multi-tier heterogeneous cellular network via stochastic geometry. Computer Communications, 184, 64–72.

    Article  Google Scholar 

  20. Okegbile, S. D., Maharaj, B. T., & Alfa, A. S. (2021). Stochastic geometry approach towards interference management and control in cognitive radio network: A survey. Computer Communications, 166, 174–195.

    Article  Google Scholar 

  21. Chetlur, V. V., & Dhillon, H. S. (2017). Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles. IEEE Transactions on Communications, 65(10), 4543–4558.

    Google Scholar 

  22. Kouzayha, N., ElSawy, H., Dahrouj, H., Alshaikh, K., Al-Naffouri, T. Y., Alouini, M.-S. (2020). Stochastic geometry analysis of hybrid aerial terrestrial networks with mmWave backhauling. In: ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, pp. 1–7.

  23. Ji, P., Jia, X., Lu, Y., Hu, H., Ouyang, Y. (2020). Multi-UAV assisted multi-tier millimeter-wave cellular networks for hotspots with 2-tier and 4-tier network association. IEEE Access, vol. 8, pp. 158972–158995

  24. Shi, X., & Deng, N. (2022). Modeling and analysis of mmWave UAV swarm networks: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 21(11), 9447-9459.

    Article  Google Scholar 

  25. Matracia, M., Kishk, M. A., Alouini, M.-S. (2023). UAV-aided post-disaster cellular networks: A novel stochastic geometry approach. IEEE Transactions on Vehicular Technology

  26. Armeniakos, C. K., Bithas, P. S., Kanatas, A. G. (2020). SIR analysis in 3D UAV networks: A stochastic geometry approach. IEEE Access, vol. 8, pp. 204963–204973.

  27. Kouzayha, N., ElSawy, H., Dahrouj, H., Alshaikh, K., Al-Naffouri, T. Y., & Alouini, M.-S. (2021). Analysis of large scale aerial terrestrial networks with mmWave backhauling. IEEE Transactions on Wireless Communications, 20(12), 8362–8380.

    Article  Google Scholar 

  28. Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572.

    Article  Google Scholar 

  29. Azari, M. M., Rosas, F., & Pollin, S. (2019). Cellular connectivity for UAVs: Network modeling, performance analysis, and design guidelines. IEEE Transactions on Wireless Communications, 18(7), 3366–3381.

    Article  Google Scholar 

  30. Ding, M., & Lopez-Perez, D. (2017). Performance impact of base station antenna heights in dense cellular networks. IEEE Transactions on Wireless Communications, 16(12), 8147–8161.

    Article  Google Scholar 

  31. Wang, X., Zhang, H., Tian, Y., & Leung, V. C. (2018). Modeling and analysis of aerial base station-assisted cellular networks in finite areas under LoS and NLoS propagation. IEEE Transactions on Wireless Communications, 17(10), 6985–7000.

    Article  Google Scholar 

  32. Afshang, M., & Dhillon, H. S. (2017). Fundamentals of modeling finite wireless networks using binomial point process. IEEE Transactions on Wireless Communications, 16(5), 3355–3370.

    Article  Google Scholar 

  33. Alzer, H. (1997). On some inequalities for the incomplete gamma function. Mathematics of Computation, 66(218), 771–778.

    Article  Google Scholar 

  34. Alzenad, M., & Yanikomeroglu, H. (2019). Coverage and rate analysis for vertical heterogeneous networks (vhetnets). IEEE Transactions on Wireless Communications, 18(12), 5643–5657.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by General Directorate for Scientific Research and Technological Development, Ministry of Higher Education and Scientific Research (DGRSDT), Algeria.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Dina Alkama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We recall that the K transmitting UAVs in a single swarm are i.i.d. with an arbitrary location \(\{u_k\}_{k=1:K}\) according to the BPP, and \(Y_{u_k}\le y_u\) is the distance between a UAV \(u_k\) and typical user, thus that there is only one serving UAV, which is the one that gives the highest received power. Let \(\mathcal {C}_L\) denote the event that the service UAV located at \(u_i\) is in LoS connection with the user, the distance between the two being noted as r. \(\mathcal {C}_L\) can be defined as

$$\begin{aligned}&\mathcal {C}_L\overset{(a)}{=} K P_L(Y_{u_i}) \underset{u_k\in \psi \backslash u_i}{\prod } \mathbb {P} (P_{e} \varphi _{L}^{-1} Y_{u_i}^{-\alpha _{L}}>P_{e} \varphi _{L}^{-1} Y_{u_k}^{-\alpha _{L}}\nonumber \\&\cup P_{e} \varphi _{L}^{-1} Y_{u_i}^{-\alpha _{L}}>P_{e} \varphi _{N}^{-1} Y_{u_k}^{-\alpha _{N}} \big )\nonumber \\ =&K P_L(r) \underset{u_k\in \psi \backslash u_i}{\prod }\ \mathbb {P} ( Y_{u_k}> r) + \mathbb {P} ( Y_{u_k}> r^{\frac{\alpha _{L}}{\alpha _{N}}}) \nonumber \\ =&K P_L(r) \left( \int _{r}^{y_u} P_{L}(y) f_{Y_{u_k}}(y) dy\right. \nonumber \\&\left. +\int _{R_{LN}(r)}^{y_u} P_{N}(y) f_{Y_{u_k}}(y) dy \right) ^{K-1}, \end{aligned}$$
(19)

where (a) follows from that there are K possibilities to choose the UAV \(u_i\). and the event that the strongest UAV can be LoS or NLoS are mutually exclusive. (b) means that there is no UAV in NLoS located at a distance less than \(R_{LN}(r)\). Integrating according to r results in the association probability \(\mathcal {A}_L(y_0)\) given in (11).

Appendix B

The conditional coverage probability is the probability that the SINR at the user is greater than the SINR threshold conditioned on the serving UAV in \(s \in \{L,N\}\) link, we denoted by \(\hat{X}_s=r\) the serving distance conditioned on the event that UAV \(u_i\) is s link, \(P_s^C\) can be defined as follows

$$\begin{aligned} P_{s}^c =&\mathbb {E}_{{X}_s}\Bigg [\mathbb {P} \Bigg ( \frac{P_{e} \upsilon (\omega ,\theta _{u_i}) H_{u_i}^s \varphi _s^{-1} X_s^{-\alpha _s} }{I+\sigma _N^2}> \tau \nonumber \\ {}&|\text {the serving UAV is in} s \text {link}\Bigg )\Bigg ] \nonumber \\ =&\mathbb {E}_{\hat{X}_s}\left[ \mathbb {P} \left( H_{u_i}^s >\frac{ \tau \varphi _s {\hat{X}_s}^{\alpha _{s}}}{P_{e} \upsilon (\omega ,\theta _{u_i}) } (I+\sigma _N^2) \right) \right] \nonumber \\ =&\mathbb {E}_{\hat{X}_s} \left[ \bar{F}_{ H_{u_i}^s}\left( \frac{ \tau \varphi _s {\hat{X}_s}^{\alpha _{s}}}{P_{e} \upsilon (\omega ,\theta _{u_i}) } (I+\sigma _N^2)\right) \right] , \end{aligned}$$
(20)

Since \(H_{u_i}^s\) is a normalized gamma random variable, \(\bar{F}_{ H_{u_i}^s}(x)\) can be approximated using the gamma approximation [33] [34] to simplify the evaluation process, which yields

$$\begin{aligned} P_{s}^c=&\mathbb {E}_{\hat{X}_s,I} \left[ 1-\left( 1- e^{\frac{ \tau \varphi _s {\hat{X}_s}^{\alpha _{s}}}{P_{e} \upsilon (\omega ,\theta _{u_i}) } (I+\sigma _N^2) } \right) ^{m_s}\right] \nonumber \\ \overset{(a)}{=}&\sum _{n=1}^{m_s} (-1)^{n+1} \begin{pmatrix} m_s\\ n \end{pmatrix} \mathbb {E}_{\hat{X}_s,I}\left[ e^{\frac{- n \varepsilon _s \tau \varphi _s {\hat{X}_s}^{\alpha _{s}}}{P_{e} \upsilon (\omega ,\theta _{u_i})} (I+\sigma _N^2)} \right] \nonumber \\ =&\int _{h}^{y_u} \sum _{n=1}^{m_s} (-1)^{n+1} \begin{pmatrix} m_s\\ n \end{pmatrix} e^{-\delta \sigma _N^2} \nonumber \\&\times \mathcal {L}_I\left( \delta ,R_{sL}(r),R_{sN}(r)\right) f_{\hat{X}_s}(r)dr \end{aligned}$$
(21)

where (a) comes from the binomial theorem, \(\delta =\frac{n \varepsilon _s \tau \varphi _s {r}^{\alpha _{s}}}{P_{e} \upsilon (\omega ,\theta _{u_i})}\) and \(\mathcal {L}_I(\delta ,R_{sL}(r),R_{sN}(r)) \) is the Laplace transform of the interference. This completes the proof of (14).

Appendix C

Denote the event that the interfering SA UAV located at \(u_k \in \psi _a \backslash u_i\) in \(\ell \in \{L,N\}\) link by \(\mathcal {I}_{\ell }\). Since the number of UAVs is fixed we can write \(\mathcal {I}_{L} \cup \mathcal {I}_{N}\). Hereafter we denote by \(\mathcal {Q}_{sL}\), \(\mathcal {Q}_{sN}\) the probability that the interfering UAV is in LoS,

$$\begin{aligned} \mathcal {L}_{I}(\delta ,&R_{sL}(r),R_{sN}(r))= \mathbb {E}_{I|\mathcal {I}_{L}\cup \mathcal {I}_{N}}\left[ \exp \left( {-\delta I}\right) \right] \nonumber \\ =&\mathbb {E}_{{W_{u_k},H_{u_k}^{\ell }|\mathcal {I}_{L}\cup \mathcal {I}_{N}}}\left[ \exp \left( {-\delta \underset{{{u_k} \in \psi _a \backslash u_i}}{\sum }P_{e} \upsilon (\omega ,\theta _{u_k}) H_{u_k}^L \varphi _L^{-1} W_{{u_k}}^{-\alpha _L} + P_{e} \upsilon (\omega ,\theta _{u_k}) H_{u_k}^N \varphi _N^{-1} W_{{u_k}}^{-\alpha _N} }\right) \right] \nonumber \\ \overset{(a)}{=}&\underset{{{u_k} \in \psi _a \backslash u_i}}{\prod }\mathbb {E}_{W_{u_k}|\mathcal {I}_{sL}}\left[ \left( \frac{m_{L}}{m_{L}+\delta P_{e} \upsilon (\omega ,\theta _{u_k}) \varphi _{L}^{-1} {W_{u_k}}^{-\alpha _{L}}}\right) ^{m_{L}}\dfrac{\int _{R_{sL}(r)}^{y_u}f_{Y_{u_k}}(w)P_{L}(w)}{\underset{q}{\sum }{ \int _{R_{sq}(r)}^{y_u} f_{Y_{u_k}}(w) P_{q}(w) dw}}\right] \nonumber \\&+ \mathbb {E}_{W_{u_k}|\mathcal {I}_{sN}}\left[ \left( \frac{m_{N}}{m_{N}+\delta P_{e} \upsilon (\omega ,\theta _{u_k}) \varphi _{N}^{-1} {W_{u_k}}^{-\alpha _{N}}}\right) ^{m_{N}}\dfrac{\int _{R_{sN}(r)}^{y_u}f_{Y_{u_k}}(w)P_{N}(w)}{\underset{q}{\sum }{ \int _{R_{sq}(r)}^{y_u} f_{Y_{u_k}}(w) P_{q}(w) dw}}\right] \nonumber \\ \overset{(b)}{=}&\Bigg [ \int _{R_{sL}(r)}^{y_u} \left( \frac{m_{L}}{m_{L}+\delta P_{e} \upsilon (\omega ,\theta _{u_k}) \varphi _{L}^{-1} {W_{u_k}}^{-\alpha _{L}}}\right) ^{m_{L}}\dfrac{\int _{R_{sL}(r)}^{y_u}f_{Y_{u_k}}(w)P_{L}(w)}{\underset{q}{\sum }{ \int _{R_{sq}(r)}^{y_u} f_{Y_{u_k}}(w) P_{q}(w) dw}} f_{W_{u_k}}(w|\mathcal {I}_{L}) dw \nonumber \\&+ \int _{R_{sN}(r)}^{y_u} \left( \frac{m_{N}}{m_{N}+\delta P_{e} \upsilon (\omega ,\theta _{u_k}) \varphi _{N}^{-1} {W_{u_k}}^{-\alpha _{N}}}\right) ^{m_{N}}\dfrac{\int _{R_{sN}(r)}^{y_u}f_{Y_{u_k}}(w)P_{N}(w)}{\underset{q}{\sum }{ \int _{R_{sq}(r)}^{y_u} f_{Y_{u_k}}(w) P_{q}(w) dw}} f_{\hat{W}_{u_k}}(w|\mathcal {I}_{N}) dw \Bigg ]^{K_a -1}, \end{aligned}$$
(22)

NLoS link respectively conditioned on the two events \(\mathcal {I}_{L}\) and \(\mathcal {I}_{N}\) are mutually exclusive and given that the service UAV is in s link. \(\mathcal {Q}_{s\ell }\) is given by

$$\begin{aligned} \mathcal {Q}_{s\ell }=&\mathbb {P}(\mathcal {I}_{\ell }|\mathcal {I}_{\ell }\cup \mathcal {I}_{b}) =\dfrac{\mathbb {P}(\mathcal {I}_{\ell }|\mathcal {C}_s)}{\mathbb {P}(\mathcal {I}_{\ell }|\mathcal {C}_s+\mathcal {I}_{b}|\mathcal {C}_s)}\nonumber \\ =&\dfrac{\int _{R_{s\ell }(r)}^{y_u}f_{Y_{u_k}}(w)P_{\ell }(w)}{\underset{q}{\sum }{ \int _{R_{sq}(r)}^{y_u} f_{Y_{u_k}}(w) P_{q}(w) dw}}, \end{aligned}$$
(23)

where \(s,\ell ,b\in \{L,N\}\) and \(b\ne \ell \). Using the aggregate interference equation in (8) and applying the Laplace transform definition, \(\mathcal {L}(\delta ,R_{sL}(r),R_{sN}(r))\) is given in (22).

Where (a) follows from the gamma distribution of the channel gain \(H_{u_k}^{\ell }\) using the moment generating function, and by substituting the equation (23), (b) is due to the fact that the \(K_a -1\) interfering UAVs are i.i.d. over \(D_a\). \(f_{W_{u_k}}(w|\mathcal {I}_{\ell }) \) is the PDF of the interfering distance \(W_{u_k}\) conditioned on the event \(\mathcal {I}_{\ell }\), it can be given as [31]

$$\begin{aligned} f_{W_{u_k}}(w|\mathcal {I}_{\ell })= \dfrac{f_{Y_{u_k}}(w) P_{\ell }(w)}{\int _{R_{s\ell }(r)}^{y_u} f_{Y_{u_k}}(w) P_{\ell }(w) dw}, \end{aligned}$$
(24)

Substitution (24) in (22) results in (16).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkama, D., Ouamri, M.A., Azni, M. et al. Coverage and network spectral efficiency analysis for UAV swarm under 3D beamforming in isolated regions. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01173-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01173-y

Keywords

Navigation