Log in

A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Tempered fractional derivatives and the corresponding tempered fractional differential equations have played a key role in physical science. In this paper, for solving the tempered fractional ordinary differential equation, the predictor–corrector (PC) methods with uniform and non-uniform meshes of Deng et al. (Numer Algorithms 74(3):717–754, 2017) are developed, by using the piecewise quadratic interpolation polynomial. The error bounds of proposed predictor–corrector schemes with uniform and equidistributing meshes are obtained. We proved that the presented numerical method has a higher-order convergence order \(O(h^3)\). Also, some numerical examples are constructed to demonstrate the efficacy and usefulness of the numerical methods. Finally, the results of PC schemes with uniform and non-uniform given in Deng et al. (2017) and presented schemes (improved PC with uniform and non-uniform meshes) are compared for different values of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Butzer PL, Westphal U (2000) An introduction to fractional calculus. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 1–85

    MATH  Google Scholar 

  2. Heymans N, Podlubny I (2006) Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol Acta 45(5):765–771

    Google Scholar 

  3. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, London

    MATH  Google Scholar 

  4. Ali Z, Kumam P, Shah K, Zada A (2019) Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations. Mathematics 7(4):341

    Google Scholar 

  5. Shah R, Khan H, Arif M, Kumam P (2019) Application of Laplace–Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations. Entropy 21(4):335

    MathSciNet  Google Scholar 

  6. Saoudi K, Agarwal P, Kumam P, Ghanmi A, Thounthong P (2018) The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative. Adv Differ Equ 2018(1):263

    MathSciNet  MATH  Google Scholar 

  7. Chaipunya P, Kumam P (2015) Fixed point theorems for cyclic operators with application in fractional integral inclusions with delays. Conference Publications

  8. Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, vol 198. Elsevier, Amsterdam

    MATH  Google Scholar 

  9. Kilbas AA, Marichev OI, Samko SG (1993) Fractional integral and derivatives (theory and applications), vol 1. Gordon and Breach, Basel

    MATH  Google Scholar 

  10. Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    MathSciNet  MATH  Google Scholar 

  11. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, Singapore

    MATH  Google Scholar 

  12. Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371(6):461–580

    MathSciNet  MATH  Google Scholar 

  13. Matignon D (1996) Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, IMACS. IEEE-SMC Lille, France, vol 2, pp 963–968

  14. Matignon D, d’Andrea B (1997) Novel, observer-based controllers for fractional differential systems, In: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, vol 5. IEEE, pp 4967–4972

  15. Diethelm K, Ford NJ, Freed AD (2004) Detailed error analysis for a fractional adams method. Numer Algorithms 36(1):31–52

    MathSciNet  MATH  Google Scholar 

  16. Meerschaert MM, Sabzikar F, Phanikumar MS, Zeleke A (2014) Tempered fractional time series model for turbulence in geophysical flows. J Stat Mech Theory Exp 2014(9):P09023

    Google Scholar 

  17. Sheng H, Chen Y, Qiu T (2011) Fractional processes and fractional-order signal processing: techniques and applications. Springer, Berlin

    MATH  Google Scholar 

  18. Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U (2005) Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Polym Sci 98(2):923–935

    Google Scholar 

  19. Schumer R, Benson DA, Meerschaert MM, Wheatcraft SW (2001) Eulerian derivation of the fractional advection–dispersion equation. J Contam Hydrol 48(1–2):69–88

    Google Scholar 

  20. Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologicaacta 33(3):210–219

    Google Scholar 

  21. Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high-frequency financial data: an empirical study. Phys A Stat Mech Appl 314(1–4):749–755

    MATH  Google Scholar 

  22. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59(5):1586–1593

    MathSciNet  MATH  Google Scholar 

  23. Meral F, Royston T, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15(4):939–945

    MathSciNet  MATH  Google Scholar 

  24. El-Sayed A, Gaber M (2006) The adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys Lett A 359(3):175–182

    MathSciNet  MATH  Google Scholar 

  25. Golbabai A, Sayevand K (2011) Analytical treatment of differential equations with fractional coordinate derivatives. Comput Math Appl 62(3):1003–1012

    MathSciNet  MATH  Google Scholar 

  26. Heris MS, Javidi M (2017) On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions. Appl Numer Math 118:203–220

    MathSciNet  MATH  Google Scholar 

  27. Heris MS, Javidi M (2017) On fbdf5 method for delay differential equations of fractional order with periodic and anti-periodic conditions. Mediterr J Math 14(3):134

    MathSciNet  MATH  Google Scholar 

  28. Heris MS, Javidi M (2018) On fractional backward differential formulas methods for fractional differential equations with delay. Int J Appl Comput Math 4(2):72

    MathSciNet  MATH  Google Scholar 

  29. Heris MS, Javidi M (2019) Fractional backward differential formulas for the distributed-order differential equation with time delay. Bull Iran Math Soc 45:1159

    MathSciNet  MATH  Google Scholar 

  30. Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  31. Javidi M, Heris MS (2019) Analysis and numerical methods for the Riesz space distributed-order advection–diffusion equation with time delay. SeMA J 1–19

  32. Heris MS, Javidi M (2018) Second order difference approximation for a class of Riesz space fractional advection–dispersion equations with delay. ar**v preprint ar**v:1811.10513

  33. Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn 29(1–4):3–22

    MathSciNet  MATH  Google Scholar 

  34. Deng W (2007) Short memory principle and a predictor–corrector approach for fractional differential equations. J Comput Appl Math 206(1):174–188

    MathSciNet  MATH  Google Scholar 

  35. Deng W (2007) Numerical algorithm for the time fractional Fokker–Planck equation. J Comput Phys 227(2):1510–1522

    MathSciNet  MATH  Google Scholar 

  36. Li C, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230(9):3352–3368

    MathSciNet  MATH  Google Scholar 

  37. Daftardar-Gejji V, Sukale Y, Bhalekar C (2014) A new predictor–corrector method for fractional differential equations. Appl Math Comput 244:158–182

    MathSciNet  MATH  Google Scholar 

  38. Yan Y, Pal K, Ford NJ (2014) Higher order numerical methods for solving fractional differential equations. BIT Numer Math 54(2):555–584

    MathSciNet  MATH  Google Scholar 

  39. Asl MS, Javidi M (2017) An improved PC scheme for nonlinear fractional differential equations: error and stability analysis. J Comput Appl Math 324:101–117

    MathSciNet  MATH  Google Scholar 

  40. Asl MS, Javidi M (2018) Novel algorithms to estimate nonlinear fdes: applied to fractional order nutrient-phytoplankton–zooplankton system. J Comput Appl Math 339:193–207

    MathSciNet  MATH  Google Scholar 

  41. Liu Y, Roberts J, Yan Y (2018) A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int J Comput Math 95(6–7):1151–1169

    MathSciNet  Google Scholar 

  42. Liu Y, Roberts J, Yan Y (2018) Detailed error analysis for a fractional adams method with graded meshes. Numer Algorithms 78(4):1195–1216

    MathSciNet  MATH  Google Scholar 

  43. Zhang YN, Sun ZZ, Liao HL (2014) Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys 265:195–210

    MathSciNet  MATH  Google Scholar 

  44. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  45. Cartea A, del Castillo-Negrete D (2007) Fractional diffusion models of option prices in markets with jumps. Phys A Stat Mech Appl 374(2):749–763

    Google Scholar 

  46. Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34(12–13):1399–1421

    MathSciNet  MATH  Google Scholar 

  47. Meerschaert MM, Zhang Y, Baeumer B (2008) Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett 35:L17403

    Google Scholar 

  48. Deng J, Zhao L, Wu Y (2017) Fast predictor–corrector approach for the tempered fractional differential equations. Numer Algorithms 74(3):717–754

    MathSciNet  MATH  Google Scholar 

  49. Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 24. Elsevier Science Limited, Amsterdam

    MATH  Google Scholar 

  50. Hanyga A (2001) Wave propagation in media with singular memory. Math Comput Model 34:1399–1421

    MathSciNet  MATH  Google Scholar 

  51. Metzler R, Joseph K (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  52. Moghaddam BP, Machado JT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671

    MathSciNet  MATH  Google Scholar 

  53. Meerschaert MM, Sabzikar F (2013) Tempered fractional Brownian motion. Stat Probab Lett 83(10):2269–2275

    MathSciNet  MATH  Google Scholar 

  54. Li C, Deng W, Zhao L (2019) Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin Dyn Syst B 24(4):1989–2015

    MathSciNet  MATH  Google Scholar 

  55. Kelley CT (2003) Solving nonlinear equations with Newton’s method, vol 1. SIAM, Philadelphia

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express special thanks to the referees for carefully reading, constructive comments and valuable remarks which significantly improved the quality of this paper. This project is supported by a research grant of the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of Theorems

Appendix: Proofs of Theorems

1.1 Proof of Theorem 1

Proof

By using Lemmas 1 and 2 and the Lipschitz property of f (2.6), let \(j=n+1\), for predictor formula (3.10), and we can write

$$\begin{aligned} \begin{aligned} \left| {u({t_{n + 1}}) - u_{n + 1}^P} \right|&= \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau - \sum \limits _{j = 0}^n {{c_{j,n + 1}}{f_j}} } } \right| \\&= \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau - \sum \limits _{j = 0}^n {{c_{j,n + 1}}{f_j}} } } \right. \\&\qquad \left. { - \sum \limits _{j = 0}^n {{c_{j,n + 1}}f({t_j},u({t_j}))} + \sum \limits _{j = 0}^n {{c_{j,n + 1}}f({t_j},u({t_j}))} } \right| \\&= \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau - \sum \limits _{j = 0}^n {{c_{j,n + 1}}f({t_j},u({t_j}))} } } \right. \\&\qquad \left. { + \sum \limits _{j = 0}^n {{c_{j,n + 1}}(f({t_j},u({t_j})) - {f_j})} } \right| \le \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \right. \\&\qquad \left. { - \sum \limits _{j = 0}^n {{c_{j,n + 1}}f({t_j},u({t_j}))} } \right| + \frac{1}{{\varGamma (\alpha )}}\left| {\sum \limits _{j = 0}^n {{c_{j,n + 1}}(f({t_j},u({t_j})) - {f_j})} } \right| \\&\le \frac{{C{h^3}}}{{\varGamma (\alpha )}} + \frac{L}{{\varGamma (\alpha )}}\sum \limits _{j = 0}^n {\left| {{c_{j,n + 1}}} \right| } \left| {y({t_j}) - {y_j}} \right| \le {q_1}{h^3} + {q_2}\mathop {\max }\limits _{0 \le j \le n} \left| {y({t_j}) - {y_j}} \right| ; \end{aligned} \end{aligned}$$
(6.1)

then for corrector formula (3.4), we can write

$$\begin{aligned} \begin{aligned} \left| {u({t_{n + 1}}) - {u_{n + 1}}} \right|&= \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \right. \\&\quad \left. -\, \left( \sum \limits _{j = 0}^n {d_{j,n + 1}}{f_j} + {d_{n + 1,n + 1}}f({t_{n + 1}},u_{n + 1}^P)\right) \right| \\&=\frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \right. \\&\quad -\, \left( \sum \limits _{j = 0}^n {d_{j,n + 1}}{f_j} + {d_{n + 1,n + 1}}f({t_{n + 1}},u_{n + 1}^P)\right) - \sum \limits _{j = 0}^{n + 1} {{d_{j,n + 1}}f({t_j},u({t_j}))} \\&\quad \left. { +\, \sum \limits _{j = 0}^{n + 1} {{d_{j,n + 1}}f({t_j},u({t_j}))} } \right| \\&= \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } \, - \sum \limits _{j = 0}^{n + 1} {{d_{j,n + 1}}f({t_j},u({t_j}))} } \right. \\&\quad \left. { + \,\sum \limits _{j = 0}^n {{d_{j,n + 1}}(f({t_j},u({t_j})) - {f_j})} + {d_{n + 1,n + 1}}[f({t_{n + 1}},u_{n + 1}^P) - f({t_{n + 1}},u({t_{n + 1}}))]} \right| \\&\le \frac{1}{{\varGamma (\alpha )}}\left| {\int _0^{{t_{n + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \right. \left. { - \sum \limits _{j = 0}^{n + 1} {{d_{j,n + 1}}f({t_j},u({t_j}))} } \right| \\&\quad +\, \frac{1}{{\varGamma (\alpha )}}\left| {\sum \limits _{j = 0}^n {{d_{j,n + 1}}(f({t_j},u({t_j})) - {f_j})} } \right| \\&\quad +\, \frac{1}{{\varGamma (\alpha )}}\left| {{d_{n + 1,n + 1}}[f({t_{n + 1}},u_{n + 1}^P) - f({t_{n + 1}},u({t_{n + 1}}))} \right| \\&\le \frac{{C{h^3}}}{{\varGamma (\alpha )}} + \frac{L}{{\varGamma (\alpha )}}\sum \limits _{j = 0}^n {\left| {{d_{j,n + 1}}} \right| } \left| {u({t_j}) - {y_j}} \right| + \frac{L}{{\varGamma (\alpha )}}\left| {{d_{n + 1,n + 1}}} \right| \left| {u({t_{n + 1}}) - u_{n + 1}^P} \right| \\&\le {q_3}{h^3} + {q_4}\mathop {\max }\limits _{0 \le j \le n} \left| {u({t_j}) - {u_j}} \right| + {q_5}{h^3} + {q_6}\mathop {\max }\limits _{0 \le j \le n} \left| {u({t_j}) - {u_j}} \right| \\&\quad = {C_1}{h^3} + {C_2}\mathop {\max }\limits _{0 \le j \le n} \left| {u({t_j}) - {u_j}} \right| . \end{aligned} \end{aligned}$$
(6.2)

Finally, by using the mathematical induction, for all \(0 \le j \le n + 1\), we have

$$\begin{aligned} \mathop {\max }\limits _{0 \le j \le n + 1} \left| {u({t_j}) - {u_j}} \right| = \mathrm{O}({h^3}). \end{aligned}$$
(6.3)

\(\square \)

1.2 Proof of Lemma 3

Proof

By using the piecewise quadratic interpolation for \({{\mathrm{e}}^{ - \lambda ({t_j} - \tau )}}f(\tau ,u(\tau ))\) at the nodes \({t_{j - 2}}\), \({t_{j-1}}\) and \({t_{j}}\), we can write

$$\begin{aligned} \begin{aligned}&{\sum \limits _{j = 2}^n {\int _{{t_j}}^{{t_{j + 1}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } }\\&\quad { \approx \sum \limits _{j = 2}^n {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{({t_j} - {t_{j - 1}})({t_j} - {t_{j - 2}})}}\int _{{t_j}}^{{t_{j + 1}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{j - 1}})(\tau - {t_{j - 2}}){\mathrm{d}}\tau }\right] } }\\&\qquad { + \sum \limits _{j = 1}^{n - 1} {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{({t_j} - {t_{j + 1}})({t_j} - {t_{j - 1}})}}\int _{{t_{j + 1}}}^{{t_{j + 2}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{j + 1}})(\tau - {t_{j - 1}}){\mathrm{d}}\tau } \right] } }\\&\qquad { + \sum \limits _{j = 0}^{n - 2} {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{({t_j} - {t_{j + 2}})({t_j} - {t_{j + 1}})}}\int _{{t_{j + 2}}}^{{t_{j + 3}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{j + 2}})(\tau - {t_{j + 1}}){\mathrm{d}}\tau } \right] } }\\&\quad { = {{E}_1}\sum \limits _{j = 2}^n {\dfrac{{{h^\alpha }{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{2\alpha (\alpha + 1)(\alpha + 2)}} + {{E}_2}} \sum \limits _{j = 1}^{n - 1} {\dfrac{{{h^\alpha }{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{2\alpha (\alpha + 1)(\alpha + 2)}}} }\\&\qquad {+ {{E}_3}\sum \limits _{j = 0}^{n - 2} {\dfrac{{{h^\alpha }{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_j})}}f({t_j},u({t_j}))}}{{2\alpha (\alpha + 1)(\alpha + 2)}},} } \end{aligned} \end{aligned}$$
(6.4)

where

$$\begin{aligned} \begin{aligned} {{E}_1}&= (\alpha + 1)(\alpha + 2)(j - n - 2)(j - n - 3)W(j - 1,\alpha )\\&\quad +\, \alpha (\alpha + 2)(2j - 2k - 5)W(j - 1,\alpha + 1)\\&\quad + \,\alpha (\alpha + 1)W(j - 1,\alpha + 2),\\ {{E}_2}&= - 2(\alpha + 1)(\alpha + 2)(j - n)(j - n - 2)W(j,\alpha )\\&\quad -\, 2\alpha (\alpha + 2)(2j - 2k - 2)W(j,\alpha + 1)\\&\quad -\, 2\alpha (\alpha + 1)W(j,\alpha + 2),\\ {{E}_3}&= (\alpha + 1)(\alpha + 2)(j - n + 1)(j - n)W(j + 1,\alpha )\\&\quad + \,\alpha (\alpha + 2)(2j - 2k - 1)W(j + 1,\alpha + 1)\\&\quad + \,\alpha (\alpha + 1)W(j + 1,\alpha + 2). \end{aligned} \end{aligned}$$
(6.5)

By using (6.4) and (6.5), the proof is complete. \(\square \)

1.3 Proof of Lemma 5

Proof

By using the piecewise quadratic interpolation for \({{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}f(\tau ,u(\tau ))\) at the nodes \({t_{{n_{i - 2}}}}\), \({t_{{n_{i - 1}}}}\) and \({t_{{n_{i}}}}\) in the predictor formula, we have

$$\begin{aligned} \begin{aligned}&\sum \limits _{i = 2}^{{m_n}} {\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \\&\quad \approx \sum \limits _{i = 2}^{{m_n}} {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_{{n_i}}})}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({t_{{n_i}}} - {t_{{n_{i - 1}}}})({t_{{n_i}}} - {t_{{n_{i - 2}}}})}}\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{{n_{i - 1}}}})(\tau - {t_{{n_{i - 2}}}}){\mathrm{d}}\tau } \right] } \\&\qquad + \sum \limits _{i = 1}^{{m_n} - 1} {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_{{n_i}}})}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({t_{{n_i}}} - {t_{{n_{i + 1}}}})({t_{{n_i}}} - {t_{{n_{i - 1}}}})}}\int _{{t_{{n_{i + 1}}}}}^{{t_{{n_{i + 2}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{{n_{i + 1}}}})(\tau - {t_{{n_{i - 1}}}}){\mathrm{d}}\tau } \right] }\\&\qquad + \sum \limits _{i = 0}^{{m_n} - 2} {\left[ \dfrac{{{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - {t_{{n_i}}})}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({t_{{n_i}}} - {t_{{n_{i + 2}}}})({t_{{n_i}}} - {t_{{n_{i + 1}}}})}}\int _{{t_{{n_{i + 2}}}}}^{{t_{{n_{i + 3}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}(\tau - {t_{{n_{i + 2}}}})(\tau - {t_{{n_{i + 1}}}}){\mathrm{d}}\tau } \right] } \\&\quad = \Theta \left[ {\sum \limits _{i = 2}^{{m_n}} {\dfrac{{{{\mathrm{e}}^{ - \lambda (n + 1 - {n_i})h}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({n_i} - {n_{i - 1}})({n_i} - {n_{i - 2}})}}{\Lambda _1} + } \sum \limits _{i = 1}^{{m_n} - 1} {\dfrac{{{{\mathrm{e}}^{ - \lambda (n + 1 - {n_i})h}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({n_i} - {n_{i + 1}})({n_i} - {n_{i - 1}})}}{\Lambda _2}} } \right. \\&\qquad \left. { + \sum \limits _{i = 0}^{{m_n} - 2} {\dfrac{{{{\mathrm{e}}^{ - \lambda (tn + 1 - {n_i})h}}f({t_{{n_i}}},u({t_{{n_i}}}))}}{{({n_i} - {n_{i + 2}})({n_i} - {n_{i + 1}})}}{\Lambda _3}} } \right] , \end{aligned} \end{aligned}$$
(6.6)

where

$$\begin{aligned} \begin{aligned} {\Lambda _1}&= (\alpha + 1)(\alpha + 2)(n + 1 - {n_{i - 1}})(n + 1 - {n_{i - 2}})R(i,\alpha )\\&\quad +\, \alpha (\alpha + 2)(2n + 2 - {n_{i - 1}} - {n_{i - 2}})R(i,\alpha + 1) + \alpha (\alpha + 1)R(i,\alpha + 2),\\ {\Lambda _2}&= (\alpha + 1)(\alpha + 2)(n + 1 - {n_{i + 1}})(n + 1 - {n_{i - 1}})R(i + 1,\alpha )\\&\quad +\, \alpha (\alpha + 2)(2n + 2 - {n_{i - 1}} - {n_{i + 1}})R(i + 1,\alpha + 1) + \alpha (\alpha + 1)R(i + 1,\alpha + 2),\\ {\Lambda _3}&= (\alpha + 1)(\alpha + 2)(n + 1 - {n_{i + 2}})(n + 1 - {n_{i + 1}})R(i + 2,\alpha )\\&\quad +\, \alpha (\alpha + 2)(2n + 2 - {n_{i + 2}} - {n_{i + 1}})R(i + 2,\alpha + 1) + \alpha (\alpha + 1)R(i + 2,\alpha + 2); \end{aligned} \end{aligned}$$
(6.7)

by using (6.6) and (6.7), the proof is complete. \(\square \)

1.4 Proof of Lemma 7

Proof

Let \({{\tilde{f}}_1}\) and \({{\tilde{f}}_2}\) be the piecewise quadratic interpolation for \({{\mathrm{e}}^{\lambda t}}f(t)\) with nodes, \({t_{{n_i}}},{t_{{n_{i+1}}}},{n_{{n_{i+2}}}}\), and \({t_{j}},{t_{j+1}},{t_{j+2}}\), respectively. Since

$$\begin{aligned} \begin{aligned}&\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau = {{\mathrm{e}}^{ - \lambda {t_{n + 1}}}}\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{{\mathrm{e}}^{\lambda \tau }}f(\tau ,u(\tau )){\mathrm{d}}\tau } } \\&\quad \approx {{\mathrm{e}}^{ - \lambda {t_{n + 1}}}}\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{k + 1}} - \tau )}^{\alpha - 1}}{{\tilde{f}}_1}(\tau ){\mathrm{d}}\tau = \Theta {{\mathrm{e}}^{ - \lambda {t_{n + 1}}}}\left[ {{{\mathrm{e}}^{\lambda {t_{{n_i}}}}}{\mathop {b}\limits ^{\frown }} _{i,n + 1}^Rf({t_{{n_i}}},u({t_{{n_i}}}))} \right. } \\&\qquad \left. { + {{\mathrm{e}}^{\lambda {t_{{n_{i + 1}}}}}}{\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^Mf({t_{{n_{i + 1}}}},u({t_{{n_{i + 1}}}})) + {{\mathrm{e}}^{\lambda {t_{{n_{i + 2}}}}}}{\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^Lf({t_{{n_{i + 2}}}},u({t_{{n_{i + 2}}}}))} \right] ,\\&\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{\mathrm{e}}^{ - \lambda ({t_{n + 1}} - \tau )}}{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau } \approx {{\mathrm{e}}^{ - \lambda {t_{n + 1}}}}\int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{{\tilde{f}}_2}(\tau ){\mathrm{d}}\tau } \\&\quad = \Theta {{\mathrm{e}}^{ - \lambda {t_{n + 1}}}}\left[ {\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {({{\mathrm{e}}^{\lambda {t_j}}}{\mathop {d}\limits ^{\frown }} _{j,n + 1}^Rf({t_j},u({t_j})) + {{\mathrm{e}}^{\lambda {t_{j + 1}}}}{\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^Mf({t_{j + 1}},u({t_{j + 1}}))} } \right. \\&\qquad \left. { + {{\mathrm{e}}^{\lambda {t_{j + 2}}}}{\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^Lf({t_{j + 2}},u({t_{j + 2}})))} \right] , \end{aligned} \end{aligned}$$
(6.8)

if we take \(f(\tau ) \equiv 1\) and \(\lambda =0\), we can write

$$\begin{aligned} \int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}f(\tau ,u(\tau )){\mathrm{d}}\tau = \frac{{{h^\alpha }}}{\alpha }} \left[ {{{(n + 1 - {n_i})}^\alpha } - {{(n + 1 - {n_{i + 1}})}^\alpha }} \right] ; \end{aligned}$$
(6.9)

by using (6.8) and (6.9), we have

$$\begin{aligned} \begin{aligned}&{{\mathop {b}\limits ^{\frown }}}_{i,n + 1}^R + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^M + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^L = \sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {({\mathop {d}\limits ^{\frown }} _{j,n + 1}^R + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^M + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^L)} \\&\quad = (\alpha + 1)(\alpha + 2)\left[ {{{(n + 1 - {n_i})}^\alpha } - {{(n + 1 - {n_{i + 1}})}^\alpha }} \right] . \end{aligned} \end{aligned}$$
(6.10)

We let \(G(t) = {{\mathrm{e}}^{\lambda t}}f(t)\), by combining (3.21, 4.29, 4.32) and (6.10), and we can write

$$\begin{aligned} \begin{aligned}&{{\mathrm{e}}^{\lambda {t_{n + 1}}}}\left| {\sum \limits _{j = 0}^n {{\mathop {d}\limits ^{\frown }}_{j,n + 1}}f({t_j},u({t_j})) - \sum \limits _{i = 0}^{{m_n}} {{\mathop {b}\limits ^{\frown }}_{i,k + 1}}f({t_{{n_i}}},u({t_{{n_i}}}))} \right| \\&\quad = \left| {\sum \limits _{j = 0}^n {({\mathop {d}\limits ^{\frown }} _{j,n + 1}^L + {\mathop {d}\limits ^{\frown }} _{j,n + 1}^M + {\mathop {d}\limits ^{\frown }} _{j,n + 1}^R)G({t_j}) - \sum \limits _{i = 0}^{{m_n}} {({\mathop {b}\limits ^{\frown }} _{i,n + 1}^L + {\mathop {b}\limits ^{\frown }} _{i,n + 1}^M + {\mathop {b}\limits ^{\frown }} _{i,n + 1}^R)G({t_{{n_i}}})} } } \right| \\&\quad = \left| {\sum \limits _{i = 0}^{{m_n} - 2} {\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {[{\mathop {d}\limits ^{\frown }} _{j,n + 1}^RG({t_j}) + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^MG({t_{j + 1}}) + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^LG({t_{j + 2}})]} } } \right. \\&\qquad \left. { - \sum \limits _{i = 0}^{{m_n} - 2} {({\mathop {b}\limits ^{\frown }} _{i,n + 1}^RG({t_{{n_i}}}) + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^MG({t_{{n_{i + 1}}}}) + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^LG({t_{{n_{i + 2}}}})]} } \right| \\&\quad = \left| {\sum \limits _{i = 0}^{{m_n} - 2} {\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {({\mathop {d}\limits ^{\frown }} _{j,n + 1}^R[G({t_{{k_i}}}) + G'({\xi _j})({t_j} - {t_{{n_i}}})] + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^M[G({t_{{n_i}}})} } } \right. \\&\qquad + G'({\xi _{j + 1}})({t_{j + 1}} - {t_{{n_i}}})] + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^L[G({t_{{n_i}}}) + G'({\xi _{j + 2}})({t_{j + 2}} - {t_{{n_i}}})])\\&\qquad - \sum \limits _{i = 0}^{{m_n} - 2} {({\mathop {b}\limits ^{\frown }} _{i,n + 1}^RG({t_{{n_i}}}) + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^M[G({t_{{n_i}}}) + G'({\xi _{{n_{i + 1}}}})({t_{{n_{i + 1}}}} - {t_{{n_i}}})]} \\&\qquad \left. { + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^L[G({t_{{n_i}}}) + G'({\xi _{{n_{i + 2}}}})({t_{{n_{i + 2}}}} - {t_{{n_i}}})])} \right| \\&\quad \le \left| {\sum \limits _{i = 0}^{{m_n} - 2} {[(\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {[{\mathop {d}\limits ^{\frown }} _{j,n + 1}^R + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^M + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^L]} )} } \right. \\&\qquad - ({\mathop {b}\limits ^{\frown }} _{i,n + 1}^R + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^M + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^L)\left. {]G({t_{{n_i}}})} \right| + {\left\| {G'} \right\| _\infty }\sum \limits _{i = 0}^{{m_n} - 2} {({t_{{n_{i + 1}}}} - {t_{{n_i}}})} \\&\qquad .\left| {(\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {[{\mathop {d}\limits ^{\frown }} _{j,n + 1}^R + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^M + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^L]} ) + ({\mathop {b}\limits ^{\frown }} _{i,n + 1}^R + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^M + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^L)} \right| \\&\quad = {\left\| {G'} \right\| _\infty }\sum \limits _{i = 0}^{{m_n} - 2} {({t_{{n_{i + 1}}}} - {t_{{n_i}}})\left| {(\sum \limits _{j = {n_i}}^{{n_{i + 1}} - 1} {[{\mathop {d}\limits ^{\frown }} _{j,n + 1}^R + {\mathop {d}\limits ^{\frown }} _{j + 1,n + 1}^M + {\mathop {d}\limits ^{\frown }} _{j + 2,n + 1}^L]} )} \right. } \\&\qquad \left. { + ({\mathop {b}\limits ^{\frown }} _{i,n + 1}^R + {\mathop {b}\limits ^{\frown }} _{i + 1,n + 1}^M + {\mathop {b}\limits ^{\frown }} _{i + 2,n + 1}^L)} \right| \le 2(\alpha + 1)(\alpha + 2){{\mathrm{e}}^{\lambda {t_{n + 1}}}}{\left\| {f' + \lambda f} \right\| _\infty }\\&\qquad .\sum \limits _{i = 0}^{{m_n} - 2} {({t_{{n_{i + 1}}}} - {t_{{n_i}}})[{{(n + 1 - {n_i})}^\alpha } - {{(n + 1 - {n_{i + 1}})}^\alpha }]} \end{aligned} \end{aligned}$$
(6.11)

where \({\xi _S} \in [{t_{{n_i}}},{t_S}]\). For equal-area distribution method, by the use of (4.10), we have

$$\begin{aligned} {({t_{n + 1}} - {t_{{n_i}}})^\alpha } - {({t_{n + 1}} - {t_{{n_{i + 1}}}})^\alpha } = \alpha ({t_{{n_{i + 1}}}} - {t_{{n_i}}}){({t_{n + 1}} - {t_{{n_i}}})^{\alpha - 1}}; \end{aligned}$$

therefore, we can write

$$\begin{aligned}{}[{(n + 1 - {n_i})^\alpha } - {(n + 1 - {n_{i + 1}})^\alpha }] \le \dfrac{{\alpha {{\mathrm{e}}^{\lambda {t_{n + 1}}}}}}{{{h^\alpha }}}\Delta S; \end{aligned}$$
(6.12)

and by using (6.11) and (6.12), finally we have

$$\begin{aligned} \frac{{{h^\alpha }}}{{\alpha (\alpha + 1)(\alpha + 2)}}\begin{array}{l} {\left| {\sum \limits _{j = 0}^n {{\mathop {d}\limits ^{\frown }}_{j,n + 1}}f({t_j},u({t_j})) - \sum \limits _{i = 0}^{{m_n}} {{\mathop {b}\limits ^{\frown }}_{i,n + 1}}f({t_{{n_i}}},u({t_{{n_i}}}))} \right| \le C{h^3}.} \end{array} \end{aligned}$$
(6.13)

For the equal-height distribution method, we assume

$$\begin{aligned} \int _{{t_{{n_{{i^*}}}}}}^{{t_{{n_{{i^*} + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{\mathrm{d}}\tau = \mathop {Max}\limits _{0 \le i \le {m_n} - 2} \int _{{t_{{n_i}}}}^{{t_{{n_{i + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{\mathrm{d}}\tau } } ; \end{aligned}$$
(6.14)

therefore, we can write

$$\begin{aligned} {\int _{{t_{{n_{{i^*}}}}}}^{{t_{{n_{{i^*} + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{\mathrm{d}}\tau \le ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})} ^{\alpha - 1}}({t_{{n_{{i^*} + 1}}}} - {t_{{n_{{i^*}}}}}); \end{aligned}$$

by using (4.6), we have

$$\begin{aligned} \begin{aligned}&{({t_{{n_{{i^*} + 2}}}} - {t_{{n_{{i^*} + 1}}}}){{({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}^{\alpha - 2}} \le \dfrac{{{{\mathrm{e}}^{\lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}\Delta u}}{{(1 - \alpha ) + \lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}}\\&{{{({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}^{\alpha - 1}} \le \dfrac{{({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}}){{\mathrm{e}}^{\lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}\Delta u}}{{({t_{{n_{{i^*} + 2}}}} - {t_{{n_{{i^*} + 1}}}})[(1 - \alpha ) + \lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})]}}}\\&\quad {\le \dfrac{{{{\mathrm{e}}^{\lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}\Delta u}}{{\lambda ({t_{{n_{{i^*} + 2}}}} - {t_{{n_{{i^*} + 1}}}})}};} \end{aligned} \end{aligned}$$
(6.15)

and thus,

$$\begin{aligned} {\int _{{t_{{n_{{i^*}}}}}}^{{t_{{n_{{i^*} + 1}}}}} {{{({t_{k + 1}} - \tau )}^{\alpha - 1}}{\mathrm{d}}\tau \le \frac{{({n_{{i^*} + 1}} - {n_{{i^*}}}){{\mathrm{e}}^{\lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}\Delta u}}{{\lambda ({n_{{i^*} + 2}} - {n_{{i^*} + 1}})}} = {H_{{n_{{i^*}}}}}\Delta u,} } \end{aligned}$$

where \({H_{{n_{{i^*}}}}} = \frac{{({n_{{i^*} + 1}} - {n_{{i^*}}}){{\mathrm{e}}^{\lambda ({t_{n + 1}} - {t_{{n_{{i^*} + 1}}}})}}}}{{\lambda ({n_{{i^*} + 2}} - {n_{{i^*} + 1}})}}\). By using (6.11) and (4.6)

$$\begin{aligned} \begin{aligned}&{\left| {\sum \limits _{j = 0}^n {{\mathop {d}\limits ^{\frown }}_{j,n + 1}}f({t_j},u({t_j})) - \sum \limits _{i = 0}^{{m_n}} {{\mathop {b}\limits ^{\frown }}_{i,n + 1}}f({t_{{n_i}}},u({t_{{n_i}}}))} \right| }\\&\quad { \le \frac{{2\alpha (\alpha + 1)(\alpha + 2)}}{{{h^\alpha }}}{{\left\| {f' + \lambda f} \right\| }_\infty }\sum \limits _{i = 0}^{{m_n} - 2} {({t_{{n_{i + 1}}}} - {t_{{n_i}}})} \int _{{t_{{n_{{i^*}}}}}}^{{t_{{n_{{i^*} + 1}}}}} {{{({t_{n + 1}} - \tau )}^{\alpha - 1}}{\mathrm{d}}\tau } }\\&\quad { \le \frac{{2\alpha (\alpha + 1)(\alpha + 2){t_n}}}{{{h^\alpha }}}{{\left\| {f' + \lambda f} \right\| }_\infty }{H_{{n_{{i^*}}}}}\Delta u}\\&\quad { \le \frac{{\alpha (\alpha + 1)(\alpha + 2)}}{{{h^\alpha }}}C\Delta u,} \end{aligned} \end{aligned}$$
(6.16)

and finally, we have

$$\begin{aligned} \frac{{{h^\alpha }}}{{\alpha (\alpha + 1)(\alpha + 2)}}\begin{array}{l} {\left| {\sum \limits _{j = 0}^n {{\mathop {d}\limits ^{\frown }}_{j,n + 1}}f({t_j},u({t_j})) - \sum \limits _{i = 0}^{{m_n}} {{\mathop {b}\limits ^{\frown }}_{i,n + 1}}f({t_{{n_i}}},u({t_{{n_i}}}))} \right| \le C\dfrac{{\Delta u}}{h}.} \end{array} \end{aligned}$$
(6.17)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedshoar Heris, M., Javidi, M. A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J Supercomput 75, 8168–8206 (2019). https://doi.org/10.1007/s11227-019-02979-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02979-3

Keywords

Mathematics Subject Classification

Navigation