Log in

Computational analyses of cooperativity between pnicogen and halogen bonds in H2FP:pyrimidine: ClF complex

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The substituent effects on cooperativity between pnicogen and halogen bonds in ternary complexes involving pyrimidine with substituents X in the 5-position (X = CN, NC, CF3, Br, Cl, F, H, CH3, C(CH3)3, NH2, N(CH3)2), H2FP, and ClF are investigated using theoretical calculations at the MP2/aug-cc-pVDZ level. The reduced density gradient (RDG) analysis indicates that the halogen and pnicogen interactions clearly stand out as attractive interactions. The calculated synergetic energies in ternary complexes are positive, which demonstrates the antagonist effect of pnicogen and halogen interactions upon each other. According to geometrical parameters, binding energies, molecular electrostatic potentials (MEPs), and the results of natural bond orbital (NBO), atoms in molecules (AIM), and nuclear magnetic resonance (NMR) analyses, pnicogen and halogen bonds are weakened in the ternary complexes where two pnicogen and halogen bonds coexist. The results indicate reduced electron density values, second-order perturbation energies, charge transfer values, and two-bonded spin–spin coupling constants for both pnicogen and halogen bonds in the ternary complex as compared to the isolated binary systems. Also, the results show that substituent effects on cooperativity between N…P pnicogen and N…Cl halogen bonds in considered system can be expressed by Hammett constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Knowles RR, Jacobsen EN (2010) Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc Natl Acad Sci U S A 107:20678–20685

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Desiraju GR (2010) Crystal engineering: a brief overview. J Chem Sci 122:667–675

    CAS  Google Scholar 

  3. Guthrie F (1863) XXVIII.—on the iodide of iodammonium. J Chem Soc 16:239–244

    Google Scholar 

  4. Dumas JM, Peurichard H, Gomel M (1978) CX4...base interactions as models of weak charge-transfer interactions: comparison with strong charge-transfer and hydrogen-bond interactions. J Chem Res (S) 2:54–57

    Google Scholar 

  5. Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68:587–648

    CAS  Google Scholar 

  6. Hassel O (1970) Structural aspects of interatomic charge-transfer bonding. Science 170:497–502

    ADS  CAS  PubMed  Google Scholar 

  7. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101:16789–16794

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  PubMed  Google Scholar 

  9. Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chem Int Ed 54:3290–3327

    CAS  Google Scholar 

  10. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388

    CAS  PubMed  Google Scholar 

  11. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127

    CAS  Google Scholar 

  12. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bulfield D, Huber SM (2016) Halogen bonding in organic synthesis and organocatalysis. Chem Eur J 22:14434–14450

    CAS  PubMed  Google Scholar 

  14. Berger G, Soubhye J, Meyer F (2015) Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polym Chem 6:3559–3580

    CAS  Google Scholar 

  15. Alcock NW (1972) Secondary bonding to nonmetallic elements. In Advances in inorganic chemistry and radiochemistry. Academic Press.

  16. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    CAS  PubMed  Google Scholar 

  17. Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    CAS  PubMed  Google Scholar 

  18. Murray JS, Lane PA, Politzer P (2007) A predicted new type of directional noncovalent interaction. Int J Quantum Chem 107:2286–2292

    CAS  Google Scholar 

  19. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15:723–729

  20. Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    CAS  PubMed  Google Scholar 

  21. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    CAS  PubMed  Google Scholar 

  22. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178

    CAS  PubMed  Google Scholar 

  23. Hill WE, Silva-Trivino LM (1978) Preparation and characterization of di (tertiary phosphines) with electronegative substituents. 1. Symmetrical derivatives Inorg Chem 17:2495–2498

    CAS  Google Scholar 

  24. Hill WE, Silva-Trivino LM (1979) Preparation and characterization of di (tertiary phosphines) with electronegative substituents. 2. Unsymmetrical derivatives Inorg Chem 18:361–364

    CAS  Google Scholar 

  25. Kilian P, Slawin AM, Woollins JD (2003) Naphthalene-1, 8-diyl bis (halogenophosphanes): novel syntheses and structures of useful synthetic building blocks. Chem Eur J 9:215–222

    CAS  PubMed  Google Scholar 

  26. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Pnicogen bonds: a new molecular linker? Chem Eur J 17:6034–6038

    CAS  PubMed  Google Scholar 

  27. Bauza A, Quinonero D, Deya PM, Frontera A (2012) Pnicogen–π complexes: theoretical study and biological implications. Phys Chem Chem Phys 14:14061–14066

    CAS  PubMed  Google Scholar 

  28. Saparov B, He H, Zhang X, Greene R, Bobev S (2010) Synthesis, crystallographic and theoretical studies of the new Zintl phases Ba2Cd2Pn3 (Pn = As, Sb), and the solid solutions (Ba1–xSrx)2Cd2Sb3 and Ba2Cd2(Sb1–xAsx)3. Dalton Trans 39:1063–1070

    CAS  PubMed  Google Scholar 

  29. Vickaryous WJ, Healey ER, Berryman OB, Johnson DW (2005) Synthesis and characterization of two isomeric, self-assembled arsenic− thiolate macrocycles. Inorg Chem 44:9247–9252

    CAS  PubMed  Google Scholar 

  30. Alkorta I, Elguero J, Del Bene JE (2013) Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2. J Phys Chem A 117:4981–4987

    CAS  PubMed  Google Scholar 

  31. Adhikari U, Scheiner S (2011) Comparison of P⋯ D (D= P, N) with other noncovalent bonds in molecular aggregates. J Chem Phys 135:184306

    ADS  PubMed  Google Scholar 

  32. Setiawan D, Kraka E, Cremer D (2015) Strength of the pnicogen bond in complexes involving group Va elements N, P, and As. J Phys Chem A 119:1642–1656

    CAS  PubMed  Google Scholar 

  33. Politzer P, Murray JS, Janjić GV, Zarić SD (2014) σ-Hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals 4:12–31

    Google Scholar 

  34. Sarkar S, Pavan MS, Row TG (2015) Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330–2334

    CAS  PubMed  Google Scholar 

  35. Solimannejad M, Gholipour A (2013) Revealing substituent effects on the concerted interaction of pnicogen, chalcogen, and halogen bonds in substituted s-triazine ring. Struct Chem 24:1705–1711

    CAS  Google Scholar 

  36. Scheiner S (2011) Effects of substituents upon the P···N noncovalent interaction: the limits of its strength. J Phys Chem A 115:11202–11209

    CAS  PubMed  Google Scholar 

  37. Bagheri S, Masoodi HR, Akrami-Mohajeri AR (2017) A theoretical survey of substituent effects on the properties of pnicogen and hydrogen bonds in cationic complexes of PH4+ with substituted benzonitrile. J Mol Graph Model 77:64–71

    CAS  PubMed  Google Scholar 

  38. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2011) 31P–31P spin–spin coupling constants for pnicogen homodimers. Chem Phys Lett 512:184–187

    ADS  Google Scholar 

  39. Del Bene JE, Alkorta I, Sanchez-Sanz G, Elguero J (2012) Structures, binding energies, and spin–spin coupling constants of geometric isomers of pnicogen homodimers (PHFX)2, X= F, Cl, CN, CH3, NC. J Phys Chem A 116:3056–3060

    PubMed  Google Scholar 

  40. Shukla R, Chopra D (2016) “Pnicogen bonds” or “chalcogen bonds”: exploiting the effect of substitution on the formation of P⋯Se noncovalent bonds. Phys Chem Chem Phys 18:13820–13829

    CAS  PubMed  Google Scholar 

  41. Shukla R, Chopra D (2015) Exploring the role of substitution on the formation of Se··· O/N noncovalent bonds. J Phys Chem B 119:14857–14870

    CAS  PubMed  Google Scholar 

  42. George J, Deringer VL, Dronskowski R (2014) Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory. J Phys Chem A 118:3193–3200

    CAS  PubMed  Google Scholar 

  43. Esrafili MD, Vakili M, Solimannejad M (2014) Cooperative effects in pnicogen bonding:(PH2F)2–7 and (PH2Cl)2–7 clusters. Chem Phys Lett 609:37–41

    ADS  CAS  Google Scholar 

  44. Tondro T, Roohi H (2020) Substituent effects on the halogen and pnictogen bonds characteristics in ternary complexes 4-YPhNH2··· PH2 F··· ClX (Y= H, F, CN, CHO, NH2, CH3, NO2 and OCH3, and X= F, OH, CN, NC, FCC and NO2): a theoretical study. J Chem Sci 132:1–21

    Google Scholar 

  45. Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Cooperativity in multiple unusual weak bonds. Theor Chem Acc 126:1–4

    CAS  Google Scholar 

  46. Grabowski SJ (2013) Cooperativity of hydrogen and halogen bond interactions. Theor Chem Acc 132:1347

    Google Scholar 

  47. Masoodi HR, Bagheri S, Ranjbar M (2016) Theoretical study of cooperativity between hydrogen bond-hydrogen bond, halogen bond-halogen bond and hydrogen bond-halogen bond in ternary FX… diazine… XF (X= H and Cl) complexes. Mol Phys 114:3464–3474

    ADS  CAS  Google Scholar 

  48. Bagheri S, Masoodi HR, Yousofvand A (2016) Exploring the role of substituents on cooperativity between N⋯ HF and CH⋯ F hydrogen bonds in ternary systems involving aromatic azine: substituted complexes of s-triazine: HF: s-triazine as a working model. Comput Theor Chem 1092:12–18

    CAS  Google Scholar 

  49. Esrafili MD, Ghanbari M, Mohammadian-Sabet F (2014) Substituent effects on cooperativity of pnicogen bonds. J Mol Model 20:1–9

    Google Scholar 

  50. Bauzá A, Quiñonero D, Frontera A, Deyà PM (2011) Substituent effects in halogen bonding complexes between aromatic donors and acceptors: a comprehensive ab initio study. Phys Chem Chem Phys 13:20371–20379

    PubMed  Google Scholar 

  51. Zhang Q, Smalley A, Zhu Z, Xu Z, Peng C, Chen Z, Yao G, Shi J, Zhu W (2020) Computational study of the substituent effect of halogenated fused-ring heteroaromatics on halogen bonding. J Mol Model 26:1–2

    Google Scholar 

  52. Abadleh M, Peifer C, Kinkel K, Schollmeyer D, Laufer S (2007) 4-[5-(4-Fluorophenyl)-3-isopropylisoxazol-4-yl] pyridin-2 (1H)-one. Acta Crystallogr Sect E Struct Rep Online 63:1423–1425

    Google Scholar 

  53. Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci USA 104:6188–6193

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Varadwaj A, Varadwaj PR, Marques HM, Yamashita K (2022) Definition of the pnictogen bond: a perspective. Inorg 10:149

    CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V,Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (revision A.02). Gaussian, Inc, Wallingford

  56. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    ADS  CAS  Google Scholar 

  57. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  58. Biegler König B, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    PubMed  Google Scholar 

  59. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    CAS  Google Scholar 

  60. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  61. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute: University of Wisconsin. Madison, WI, 2001NBO

  62. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  63. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14:33–38

    CAS  Google Scholar 

  64. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Mol Phys 27:789–807

    ADS  CAS  Google Scholar 

  65. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    ADS  CAS  Google Scholar 

  66. Grudova MV, Kubasov AS, Khrustalev VN, Novikov AS, Kritchenkov AS, Nenajdenko VG, Borisov AV, Tskhovrebov AG (2022) Exploring supramolecular assembly space of cationic 1, 2, 4-selenodiazoles: effect of the substituent at the carbon atom and anions. Mol 27:1029

    CAS  Google Scholar 

  67. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Isaacs NS (1995) Physical organic chemistry, 2nd edn. Longman, London

    Google Scholar 

  69. Mottishaw JD, Erck AR, Kramer JH, Sun H, Koppang M (2015) Electrostatic potential maps and natural bond orbital analysis: visualization and conceptualization of reactivity in Sanger’s reagent. J Chem Educ 92:1846–1852

    CAS  Google Scholar 

  70. Khan I, Panini P, Khan SU, Rana UA, Andleeb H, Chopra D, Hameed S, Simpson J (2016) Exploiting the role of molecular electrostatic potential, deformation density, topology, and energetics in the characterization of S···N and Cl···N supramolecular motifs in crystalline triazolothiadiazoles. Cryst Growth Des 16:1371–1386

    CAS  Google Scholar 

  71. Murray JS, Politzer P (2017) Molecular electrostatic potentials and noncovalent interactions. Wiley Interdiscip Rev Comput Mol Sci 7:1326

    Google Scholar 

  72. Politzer P, Truhlar DG (2013) Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Springer Science & Business Media

  73. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev Comput Mol Sci 1:153–163

    CAS  Google Scholar 

  74. Politzer P, Murray JS (2018) σ-holes and π-holes: similarities and differences. J Comput Chem 39:464–471

    CAS  PubMed  Google Scholar 

  75. Veccham SP, Lee J, Mao Y, Horn PR, Head-Gordon M (2021) A non-perturbative pairwise-additive analysis of charge transfer contributions to intermolecular interaction energies. Phys Chem Chem Phys 23:928–943

    CAS  PubMed  Google Scholar 

  76. Golubev NS, Shenderovich IG, Smirnov SN, Denisov GS, Limbach HH (1999) Nuclear scalar spin–spin coupling reveals novel properties of low-barrier hydrogen bonds in a polar environment. Chem Eur J 5:492–497

    CAS  Google Scholar 

  77. Pavia DL, Lampman GM, Kriz GS (2007) Introduction to spectroscopy, 3rd edn. Thomson Brooks/Cole Press, Pacific Grove, California

    Google Scholar 

Download references

Acknowledgements

The authors thank the Vali-e-Asr University of Rafsanjan for financial supports and Computational Quantum Chemistry Laboratory for computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Theoretical calculations, data collection, and analysis were performed by Sotoodeh Bagheri, Mona Vasfi, and Hamid Reza Masoodi. The first draft of the manuscript was written by Sotoodeh Bagheri, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sotoodeh Bagheri.

Ethics declarations

Ethical approval

This material (partially or in full) is the authors’ own original work, which has not been previously published elsewhere.

The paper is not currently being considered for publication elsewhere.

The paper reflects the authors’ own research and analysis in a truthful and complete manner.

Consent for publication

All authors approved the version to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, S., Vasfi, M. & Masoodi, H.R. Computational analyses of cooperativity between pnicogen and halogen bonds in H2FP:pyrimidine: ClF complex. Struct Chem 35, 569–582 (2024). https://doi.org/10.1007/s11224-023-02212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02212-1

Keywords

Navigation