Log in

From informal to formal: scientific knowledge role transition prediction

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Comprehending the patterns of knowledge evolution benefits funding agencies, policymakers, and researchers in develo** creative ideas. We introduce the notation of scientific knowledge role transition as an evolution from informal to formal. We investigate how different factors affect the role transition of scientific knowledge, considering the two primary levels—transition pace and transition possibility. The interpretive machine learning models are conducted to discover that the Gradient Boosting classifier performs better for predicting transition possibility, and Random Forests regression is the most effective for predicting transition pace. Specifically, knowledge attribute features have a more obvious effect on the transition probability, while knowledge network structure has a greater effect on the transition pace. We further find that knowledge relatedness and citation number have negative effects on knowledge role transition, while adoption frequency, indegree centrality in the knowledge citation network, node number of the egocentric co-occurrence network, and journal impact of scientific knowledge have positive effects. The aforementioned discoveries enhance our comprehension of scientific knowledge evolution patterns and provide insight into the trajectory of scientific and technological advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. https://doi.org/10.6084/m9.figshare.24082668.v2.

  2. https://github.com/shap.

References

  • Agostini, L., Nosella, A., Sarala, R., Spender, J. C., & Wegner, D. (2020). Tracing the evolution of the literature on knowledge management in inter-organizational contexts: A bibliometric analysis. Journal of Knowledge Management, 24(2), 463–490.

    Article  Google Scholar 

  • Behrouzi, S., Sarmoor, Z. S., Hajsadeghi, K., & Kavousi, K. (2020). Predicting scientific research trends based on link prediction in keyword networks. Journal of Informetrics, 14(4), 101079.

    Article  Google Scholar 

  • Carley, S. F., Newman, N. C., Porter, A. L., & Garner, J. G. (2018). An indicator of technical emergence. Scientometrics, 115(1), 35–49.

    Article  Google Scholar 

  • Chen, B., Tsutsui, S., Ding, Y., & Ma, F. (2017). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics, 11(4), 1175–1189.

    Article  Google Scholar 

  • Choi, J., Yi, S., & Lee, K. C. (2011). Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Information & Management, 48(8), 371–381.

    Article  Google Scholar 

  • Dahlander, L., Gann, D. M., & Wallin, M. W. (2021). How open is innovation? A retrospective and ideas forward. Research Policy, 50(4), 104218.

    Article  Google Scholar 

  • Du, J., Li, P., Guo, Q., & Tang, X. (2019). Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis. Journal of Informetrics, 13(1), 132–148.

    Article  Google Scholar 

  • Garfield, E. (1971). The road to scientific oblivion. JAMA, 218(6), 886–887.

    Article  Google Scholar 

  • Guan, J., Yan, Y., & Zhang, J. J. (2017). The impact of collaboration and knowledge networks on citations. Journal of Informetrics, 11(2), 407–422.

    Article  Google Scholar 

  • Hjørland, B., & Albrechtsen, H. (1995). Toward a new horizon in information science: Domain-analysis. Journal of the American Society for Information Science, 46(6), 400–425.

    Article  Google Scholar 

  • Lissoni, F. (2001). Knowledge codification and the geography of innovation: The case of Brescia mechanical cluster. Research Policy, 30(9), 1479–1500.

    Article  Google Scholar 

  • Lozano, S., Calzada-Infante, L., Adenso-Díaz, B., & García, S. (2019). Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature. Scientometrics, 120, 609–629.

    Article  Google Scholar 

  • Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 4768–4777).

  • McAuliffe, G. J. (1993). Constructive development and career transition: Implications for counseling. Journal of Counseling & Development, 72(1), 23–28.

    Article  Google Scholar 

  • Möller, M., Sintek, M., Buitelaar, P., Mukherjee, S., Zhou, X. S., & Freund, J. (2008). Medical image understanding through the integration of cross-modal object recognition with formal domain knowledge. In Proceedings of the First International Conference on Health Informatics (pp. 134–141).

  • Naghavi, M., & Walsh, D. (2011). Learn from Ireland’s knowledge economy. Nature, 476(7361), 399.

    Article  Google Scholar 

  • Nayak, G., Dutta, S., Ajwani, D., Nicholson, P., & Sala, A. (2019). Automated assessment of knowledge hierarchy evolution: Comparing directed acyclic graphs. Information Retrieval Journal, 22(3–4), 256–284.

    Article  Google Scholar 

  • Purpura, D. J., Baroody, A. J., & Lonigan, C. J. (2013). The transition from informal to formal mathematical knowledge: Mediation by numeral knowledge. Journal of Educational Psychology, 105(2), 453.

    Article  Google Scholar 

  • Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843.

    Article  Google Scholar 

  • Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450–1467.

    Article  Google Scholar 

  • Tang, X., Li, X., Ding, Y., Song, M., & Bu, Y. (2020). The pace of artificial intelligence innovations: Speed, talent, and trial-and-error. Journal of Informetrics, 14(4), 101094.

    Article  Google Scholar 

  • Tu, Y. N., & Seng, J. L. (2012). Indices of novelty for emerging topic detection. Information Processing & Management, 48(2), 303–325.

    Article  Google Scholar 

  • van den Oord, A., & van Witteloostuijn, A. (2018). A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003. PLoS ONE, 13(5), e0197024.

    Article  Google Scholar 

  • Valentin, F., Norn, M. T., & Alkaersig, L. (2016). Orientations and outcome of interdisciplinary research: The case of research behaviour in translational medical science. Scientometrics, 106, 67–90.

    Article  Google Scholar 

  • Wang, Q. (2018). A bibliometric model for identifying emerging research topics. Journal of the Association for Information Science and Technology, 69(2), 290–304.

    Article  Google Scholar 

  • Xu, J., Bu, Y., Ding, Y., Yang, S., Zhang, H., Yu, C., & Sun, L. (2018). Understanding the formation of interdisciplinary research from the perspective of keyword evolution: A case study on joint attention. Scientometrics, 117, 973–995.

    Article  Google Scholar 

  • Yang, J., Bu, Y., Lu, W., Huang, Y., Hu, J., Huang, S., & Zhang, L. (2022a). Identifying keyword slee** beauties: A perspective on the knowledge diffusion process. Journal of Informetrics, 16(1), 101239.

    Article  Google Scholar 

  • Yang, J., Lu, W., Hu, J., & Huang, S. (2022b). A novel emerging topic detection method: A knowledge ecology perspective. Information Processing & Management, 59(2), 102843.

    Article  Google Scholar 

  • Yang, J., Lu, W., Huang, Y., Cheng, Q., Zhang, L., & Huang, S. (2022c). Understanding knowledge role transitions: A perspective of knowledge codification. Quantitative Science Studies, 3(4), 1133–1155.

    Article  Google Scholar 

  • Yang, J., Liu, Z., Cheng, X., et al. (2024). Understanding the keyword adoption behavior patterns of researchers from a functional structure perspective. Scientometrics. https://doi.org/10.1007/s11192-024-05031-1

    Article  Google Scholar 

  • Yoon, J., Park, J., Yun, J., & Jung, W. S. (2023). Quantifying knowledge synchronization with the network-driven approach. Journal of Informetrics, 17(4), 101455.

    Article  Google Scholar 

  • Zhou, Y., Dong, F., Kong, D., & Liu, Y. (2019). Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technological Forecasting and Social Change, 144, 205–220.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Youth Program of the National Natural Science Foundation of China (Grant No. 72304108), Major Program of the National Fund of Philosophy and Social Science of China (Grant No.19ZDA345), Natural Science Foundation of Hubei Province (Grant No. 2024AFB1018) and the Fundamental Research Funds for the Central Universities (Grant No. CCNU24ZZ140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **qing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 5 and 6, Figs. 13 and 14.

Table 5 Hyperparameter settings for the model predicting possibility of knowledge role transition
Table 6 Hyperparameter settings for the model predicting the pace of knowledge role transition
Fig. 13
figure 13

The scatter plot of the top-6 features for predicting transition possibility in Group 2

Fig. 14
figure 14

The scatter plot of the top-6 features for predicting transition possibility in Group3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Z. & Huang, Y. From informal to formal: scientific knowledge role transition prediction. Scientometrics (2024). https://doi.org/10.1007/s11192-024-05093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11192-024-05093-1

Keywords

Navigation