Log in

Protecting bipartite entanglement by collective decay and quantum interferences

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the entanglement dynamics of a pair of identical three-level V-type atoms that are interacting with a common vacuum reservoir. The effect of vacuum-induced coherence in the spontaneous emission of atoms is included in the atomic dynamics. By considering qubits formed from each atom, the entanglement dynamics of the two-qubit system is studied using concurrence as the entanglement measure. We analytically calculate the time evolution of the concurrence for initial entangled states and show that the entanglement among qubits can be preserved in the longtime limit due to vacuum-induced coherence. We demonstrate that the combined effects of vacuum-induced coherence and collective decay of atoms in the common reservoir can protect the entanglement to a better extent in comparison with the case of atoms radiating independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The fast-decaying symmetric state is known in the literature as the superradiant state in the collective system (see Ref. [47]).

  2. The antisymmetric state is well known as the subradiant (slow decaying) state in the context of collective decay of two two-level atoms (see Ref. [47]).

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  3. Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  4. Sørensen, A.S., Mølmer, K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)

    Article  ADS  Google Scholar 

  5. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  6. Lin, Y., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Dissipative production of maximally entangled steady state of two quantum bits. Nature (London) 504, 415 (2013)

    Article  ADS  Google Scholar 

  7. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  8. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  9. Ikram, M., Li, F.L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336 (2007)

    Article  ADS  Google Scholar 

  10. Bellomo, B., LoFranco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  11. Tahira, R., Ikram, M., Azim, T., Zubairy, M.S.: Entanglement dynamics of a pure bipartite system in dissipative environments. J. Phys. B 41, 205501 (2008)

    Article  ADS  Google Scholar 

  12. Bellomo, B., LoFranco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  13. Dajka, J., Mierzejewski, M., Łuczka, J.: Non-Markovian entanglement evolution of two uncoupled qubits. Phys. Rev. A 77, 042316 (2008)

    Article  ADS  Google Scholar 

  14. Rau, A.R.P., Ali, M., Alber, G.: Hastening, delaying, or averting sudden death of quantum entanglement. Europhys. Lett. 82, 40002 (2008)

    Article  ADS  Google Scholar 

  15. Singh, A., Pradyumna, S., Rau, A.R.P., Sinha, U.: Manipulation of entanglement sudden death in an all-optical setup. J. Opt. Soc. Am. B 34, 681 (2017)

    Article  ADS  Google Scholar 

  16. Jakóbczyk, L.: Entangling two qubits by dissipation. J. Phys. A 35, 6383 (2002); 36, 1537 (2003) Corrigendum

  17. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  MATH  Google Scholar 

  18. Almutairi, K., Tanaś, R., Ficek, Z.: Generating two-photon entangled states in a driven two-atom system. Phys. Rev. A 84, 013831 (2011)

    Article  ADS  Google Scholar 

  19. Ficek, Z., Tanaś, R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  20. Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A., Garraway, B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)

    Article  ADS  Google Scholar 

  21. Nourmandipour, A., Tavassoly, M.K., Rafiee, M.: Dynamics and protection of entanglement in n-qubit systems within Markovian and non-Markovian environments. Phys. Rev. A 93, 022327 (2016)

    Article  ADS  Google Scholar 

  22. Cecoi, E., Ciornea, V., Isar, A., Macovei, M.: Entanglement of a laser-driven pair of two-level qubits via its phonon environment. J. Opt. Soc. Am. B 35, 1127 (2018)

    Article  ADS  Google Scholar 

  23. Vovcenko, I.V., Shishkov, V.Y., Andrianov, E.S.: Dephasing-assisted entanglement in a system of strongly coupled qubits. Opt. Express 29, 9685 (2021)

    Article  ADS  Google Scholar 

  24. Hernandez, M., Orszag, M.: Decoherence and disentanglement for two qubits in a common squeezed reservoir. Phys. Rev. A 78, 042114 (2008)

    Article  ADS  Google Scholar 

  25. Manirul Ali, Md., Chen, P.-W., Goan, H.-S.: Decoherence-free subspace and disentanglement dynamics for two qubits in a common non-Markovian squeezed reservoir. Phys. Rev. A 82, 022103 (2010)

    Article  ADS  Google Scholar 

  26. Maniscalco, S., Francica, F., Zaffino, R.L., Lo Gullo, N., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zong, X.L., Du, C.Q., Yang, M., Yang, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude dam** by local unitary operations. Phys. Rev. A 90, 062345 (2014)

    Article  ADS  Google Scholar 

  28. Cardimona, D.A., Raymer, M.G., Stroud, C.R.: Steady-state quantum interference in resonance fluorescence. J. Phys. B 15, 55 (1982)

    Article  ADS  Google Scholar 

  29. Zhu, S.Y., Chan, R.C.F., Lee, C.P.: Spontaneous emission from a three-level atom. Phys. Rev. A 52, 710 (1995)

    Article  ADS  Google Scholar 

  30. Paspalakis, E., Knight, P.L.: Phase control of spontaneous emission. Phys. Rev. Lett. 81, 293 (1998)

    Article  ADS  Google Scholar 

  31. Paspalakis, E., Keitel, C.H., Knight, P.L.: Fluorescence control through multiple interference mechanisms. Phys. Rev. A 58, 4868 (1998)

    Article  ADS  Google Scholar 

  32. Evers, J., Bullock, D., Keitel, C.H.: Dark state suppression and narrow fluorescent feature in a laser-driven \(\Lambda \) atom. Opt. Commun. 209, 173 (2002)

    Article  ADS  Google Scholar 

  33. Macovei, M., Evers, J., Keitel, C.H.: Phase control of collective quantum dynamics. Phys. Rev. Lett. 91, 233601 (2003)

    Article  ADS  Google Scholar 

  34. Macovei, M., Evers, J., Keitel, C.H.: Coherent manipulation of collective three-level systems. Phys. Rev. A 71, 033802 (2005)

    Article  ADS  Google Scholar 

  35. Kiffner, M., Evers, J., Keitel, C.H.: Quantum interference enforced by time-energy complementarity. Phys. Rev. Lett. 96, 100403 (2006)

    Article  ADS  Google Scholar 

  36. Kiffner, M., Evers, J., Keitel, C.H.: Interference in the resonance fluorescence of two incoherently coupled transitions. Phys. Rev. A 73, 063814 (2006)

    Article  ADS  Google Scholar 

  37. Evers, J., Kiffner, M., Macovei, M., Keitel, C.H.: Geometry-dependent dynamics of two \(\Lambda \)-type atoms via vacuum-induced coherences. Phys. Rev. A 73, 023804 (2006)

    Article  ADS  Google Scholar 

  38. Arun, R.: Interference-induced splitting of resonances in spontaneous emission. Phys. Rev. A 77, 033820 (2008)

    Article  ADS  Google Scholar 

  39. Schmid, S.I., Evers, J.: Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms. Phys. Rev. A 81, 063805 (2010)

    Article  ADS  Google Scholar 

  40. Arun, R.: Interference-assisted squeezing in fluorescence radiation. Phys. Lett. A 377, 200 (2013)

    Article  ADS  MATH  Google Scholar 

  41. Crispin, H.B., Arun, R.: Fluorescence control through vacuum induced coherences. J. Phys. B 52, 075402 (2019)

    Article  ADS  Google Scholar 

  42. Crispin, H.B., Arun, R.: Squeezing in resonance fluorescence via vacuum induced coherences. J. Phys. B 53, 055402 (2020)

    Article  ADS  Google Scholar 

  43. Gong, S.Q., Paspalakis, E., Knight, P.L.: Effects of spontaneous emission interference on population inversions of a V-type atom. J. Mod. Opt. 45, 2433 (1998)

    Article  ADS  Google Scholar 

  44. Paspalakis, E., Gong, S.Q., Knight, P.L.: Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom. Opt. Commun. 152, 293 (1998)

    Article  ADS  Google Scholar 

  45. Dong, P., Tang, S.H.: Absorption spectrum of a V-type three-level atom driven by a coherent field. Phys. Rev. A 65, 033816 (2002)

    Article  ADS  Google Scholar 

  46. Arun, R.: Superluminal light propagation via quantum interference in decay channels. Phys. Rev. A 94, 043843 (2016)

    Article  ADS  Google Scholar 

  47. Ficek, Z., Swain, S.: Quantum Interference and Coherence: Theory and Experiments. Springer, New York (2005)

    MATH  Google Scholar 

  48. Kiffner, M., Macovei, M., Evers, J., Keitel, C.H.: In: Wolf, E. (ed.) Progress in Optics, vol. 55, pp. 85–197. Elsevier Science, Burlington (2010)

    Google Scholar 

  49. Dutt, M.V.G., Cheng, J., Li, B., Xu, X., Li, X., Berman, P.R., Steel, D.G., Bracker, A.S., Gammon, D., Economou, S.E., Liu, R.B., Sham, L.J.: Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. Phys. Rev. Lett. 94, 227403 (2005)

    Article  ADS  Google Scholar 

  50. Norris, D.G., Orozco, L.A., Barberis-Blostein, P., Carmichael, H.J.: Observation of ground-state quantum beats in atomic spontaneous emission. Phys. Rev. Lett. 105, 123602 (2010)

    Article  ADS  Google Scholar 

  51. Heeg, K.P., Wille, H.C., Schlage, K., Guryeva, T., Schumacher, D., Uschmann, I., Schulze, K.S., Marx, B., Kömpfer, T., Paulus, G.G., Röhlsberger, R., Evers, J.: Vacuum-assisted generation and control of atomic coherences at X-ray energies. Phys. Rev. Lett. 111, 073601 (2013)

    Article  ADS  Google Scholar 

  52. Heeg, K.P., Evers, J.: X-ray quantum optics with M\(\ddot{o}\)ssbauer nuclei embedded in thin-film cavities. Phys. Rev. A 88, 043828 (2013)

    Article  ADS  Google Scholar 

  53. Das, S., Agarwal, G.S.: Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 81, 052341 (2010)

    Article  ADS  Google Scholar 

  54. Nair, A.N., Arun, R.: Comment on Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 97, 036301 (2018)

    Article  ADS  Google Scholar 

  55. Das, S., Agarwal, G.S.: Reply to comment on protecting bipartite entanglement by quantum interferences. Phys. Rev. A 97, 036302 (2018)

    Article  ADS  Google Scholar 

  56. Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Prolonging entanglement dynamics near periodic plasmonic nanostructures. Phys. Rev. B 96, 075405 (2017)

    Article  ADS  Google Scholar 

  57. Ficek, Z., Tanaś, R.: Quantum-Limit Spectroscopy Chap. 8. Springer, New York (2017)

    Book  MATH  Google Scholar 

  58. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  59. Zhou, P., Swain, S.: Cavity engineering of quantum interference. Opt. Commun. 179, 267 (2000)

    Article  ADS  Google Scholar 

  60. Yang, Y., Xu, J., Chen, H., Zhu, S.: Quantum interference enhancement with left-handed materials. Phys. Rev. Lett. 100, 043601 (2008)

    Article  ADS  Google Scholar 

  61. Yannopapas, V., Paspalakis, E., Vitanov, N.V.: Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009)

    Article  ADS  Google Scholar 

  62. Derkacz, Ł, Jakóbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms. Phys. Rev. A 74, 032313 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arun.

Ethics declarations

Conflict of interest

The authors have no competing interests and financial/non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix equations of motion

Appendix equations of motion

The density matrix elements written in the basis (4) obey the coupled differential equations obtained from the master equation (1). The equations for the time-evolving density matrix elements are given by

$$\begin{aligned} \dot{\rho }_{11}=&-4\gamma _{1}\rho _{11}-\gamma _{12}(\rho _{18}+\rho _{19}+\rho _{81}+\rho _{91}),\nonumber \\ \dot{\rho }_{22}=&-2\gamma _{1}\rho _{22}+2\gamma _{1}\rho _{11}+2\gamma _{2}\rho _{88}-\gamma _{12}\left( \rho _{26}+ \rho _{62} \right. \nonumber \\&\left. -2(\rho _{18}+\rho _{81}) \right) -\Gamma _{1}(\rho _{23}+\rho _{32})-\Gamma _{vc}(\rho _{27}+\rho _{72}),\nonumber \\ \dot{\rho }_{33}=&-2\gamma _{1}\rho _{33}+2\gamma _{1}\rho _{11}+2\gamma _{2}\rho _{99}-\gamma _{12}\left( \rho _{37} +\rho _{73}\right. \nonumber \\&\left. -2(\rho _{19}+\rho _{91})\right) -\Gamma _{1}(\rho _{23}+\rho _{32})-\Gamma _{vc}(\rho _{36}+\rho _{63}),\nonumber \\ \dot{\rho }_{44}=&2\gamma _{1}(\rho _{22}+\rho _{33})+2\gamma _{2}(\rho _{66}+\rho _{77})+2\gamma _{12}\left( \rho _{26} +\rho _{37}\right. \nonumber \\&\left. +\rho _{62}+\rho _{73} \right) +2\Gamma _{1}(\rho _{23}+\rho _{32})+2\Gamma _{2}(\rho _{67}+\rho _{76})\nonumber \\&+2\Gamma _{vc}(\rho _{27}+\rho _{36}+\rho _{63}+\rho _{72}),\nonumber \\ \dot{\rho }_{55}=&-4\gamma _{2}\rho _{55}-\gamma _{12}(\rho _{58}+\rho _{59}+\rho _{85}+\rho _{95}),\nonumber \\ \dot{\rho }_{66}=&-2\gamma _{2}\rho _{66}+2\gamma _{1}\rho _{99}+2\gamma _{2}\rho _{55}-\gamma _{12} \left( \rho _{26} +\rho _{62}\right. \nonumber \\&-2(\rho _{59}+\rho _{95}))-\Gamma _{2}(\rho _{67}+\rho _{76})-\Gamma _{vc}(\rho _{36}+\rho _{63}),\nonumber \\ \dot{\rho }_{88}=&-2(\gamma _{1}+\gamma _{2})\rho _{88}-\gamma _{12}(\rho _{18}+\rho _{58}+\rho _{81} +\rho _{85}),\nonumber \\ \dot{\rho }_{77}=&~\dot{\rho }_{66}|_{6\leftrightarrow 7,8\leftrightarrow 9,2\leftrightarrow 3},~ \dot{\rho }_{99}=~\dot{\rho }_{88}|_{8\leftrightarrow 9},\nonumber \\ \dot{\rho }_{14}=&-2\gamma _{1}\rho _{14}-\gamma _{12}(\rho _{84}+\rho _{94}),\nonumber \\ \dot{\rho }_{15}=&-2(\gamma _{1}+\gamma _{2})\rho _{15}-\gamma _{12}(\rho _{18}+\rho _{19}+\rho _{85} +\rho _{95}),\nonumber \\ \dot{\rho }_{18}=&-(3\gamma _{1}+\gamma _{2})\rho _{18}-\gamma _{12}(\rho _{11}+\rho _{15}+\rho _{88} +\rho _{98}),\nonumber \\ \dot{\rho }_{19}=&~\dot{\rho }_{18}|_{8\leftrightarrow 9},\nonumber \\ \dot{\rho }_{23}=&-2\gamma _{1}\rho _{23}-\gamma _{12}(\rho _{27}+\rho _{63})+2\Gamma _{2}\rho _{89} -\Gamma _{1}\left( \rho _{22}\right. \nonumber \\&\left. +\rho _{33}-2\rho _{11}\right) -\Gamma _{vc}(\rho _{26}+\rho _{73}-2(\rho _{19}+\rho _{81})),\nonumber \\ \dot{\rho }_{26}=&-(\gamma _{1}+\gamma _{2})\rho _{26}-\gamma _{12}(\rho _{22}+\rho _{66}-2(\rho _{15} +\rho _{89}))\nonumber \\&+2\gamma _{1}\rho _{19}+2\gamma _{2}\rho _{85}-\Gamma _{1}\rho _{36}-\Gamma _{2}\rho _{27}\nonumber \\&-\Gamma _{vc}(\rho _{23}+\rho _{76}),\nonumber \\ \dot{\rho }_{27}=&-(\gamma _{1}+\gamma _{2})\rho _{27}-\gamma _{12}(\rho _{23}+\rho _{67})+\Gamma _{1}(2\rho _{18} -\rho _{37})\nonumber \\&+\Gamma _{2}(2\rho _{85}-\rho _{26})-\Gamma _{vc}(\rho _{22}+\rho _{77}-2(\rho _{15}+\rho _{88})),\nonumber \\ \dot{\rho }_{36}=&~\dot{\rho }_{27}|_{2\leftrightarrow 3,7\leftrightarrow 6,8\leftrightarrow 9},~ \dot{\rho }_{37}=~\dot{\rho }_{26}|_{2\leftrightarrow 3,7\leftrightarrow 6,8\leftrightarrow 9},\nonumber \\ \dot{\rho }_{45}=&-2\gamma _{2}\rho _{45}-\gamma _{12}(\rho _{48}+\rho _{49}),\nonumber \\ \dot{\rho }_{48}=&-(\gamma _{1}+\gamma _{2})\rho _{48}-\gamma _{12}(\rho _{41}+\rho _{45}),\nonumber \\ \dot{\rho }_{49}=&~\dot{\rho }_{48}|_{8\leftrightarrow 9},\nonumber \\ \dot{\rho }_{58}=&-(\gamma _{1}+3\gamma _{2})\rho _{58}-\gamma _{12}(\rho _{51}+\rho _{55}+\rho _{88} +\rho _{98}),\nonumber \\ \dot{\rho }_{59}=&~\dot{\rho }_{58}|_{8\leftrightarrow 9},\nonumber \\ \dot{\rho }_{67}=&-2\gamma _{2}\rho _{67}-\gamma _{12}(\rho _{27}+\rho _{63})+2\Gamma _{1}\rho _{98} +2\Gamma _{2}\rho _{55}\nonumber \\&-\Gamma _{2}(\rho _{66}+\rho _{77})-\Gamma _{vc}(\rho _{37}+\rho _{62}) \nonumber \\&+2\Gamma _{vc}(\rho _{58}+\rho _{95}),\nonumber \\ \dot{\rho }_{89}=&-2(\gamma _{1}+\gamma _{2})\rho _{89}-\gamma _{12}(\rho _{19}+\rho _{59}+\rho _{81}+\rho _{85}). \end{aligned}$$
(A.1)

The other density matrix elements are decoupled from the above equations and are identically zero at all times with the initial conditions considered in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.N., Arun, R. Protecting bipartite entanglement by collective decay and quantum interferences. Quantum Inf Process 21, 272 (2022). https://doi.org/10.1007/s11128-022-03605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03605-7

Keywords

Navigation