Log in

Asymptotic Behavior for Multi-scale SDEs with Monotonicity Coefficients Driven by Lévy Processes

  • Research
  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic behavior for multi-scale stochastic differential equations driven by Lévy processes. The optimal strong convergence order 1/2 is obtained by studying the regularity estimates for the solution of Poisson equation with polynomial growth coefficients, and the optimal weak convergence order 1 is got by using the technique of Kolmogorov equation. The main contribution is that the obtained results can be applied to a class of multi-scale stochastic differential equations with monotonicity coefficients, as well as the driven processes can be the general Lévy processes, which seems new in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press (2009)

    Book  Google Scholar 

  2. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23(1), 645–669 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stochastic Process Appl 122, 2553–2593 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bréhier, C.E.: Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component. Stochastic Process Appl 130, 3325–3368 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cerrai, S.: Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J Math Anal 43, 2482–2518 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction-diffusion equations. Probab Theory Related Fields 144, 137–177 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, P., Lu, J., Xu, L.: Approximation to stochastic variance reduced gradient Langevin dynamics by stochastic delay differentia equations (2021). ar**v:2106.04357

  8. Crisan, D., Dobson, P., Goddard, B., Ottobre, M., Souttar, I.:Poisson equations with locally-lipschitz coefficients and uniform in time averaging for stochastic differential equations via strong exponential stability (2022). ar**v:2204.02679

  9. de Feo, F.: The Order of Convergence in the Averaging Principle for Slow-Fast Systems of Stochastic Evolution Equations in Hilbert Spaces. Appl Math Optim 88(2), 39 (2023)

    Article  MathSciNet  Google Scholar 

  10. Dong, Z., Sun, X., **ao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J Differential Equations 265, 4749–4797 (2018)

    Article  MathSciNet  Google Scholar 

  11. Fu, H., Wan, L., Liu, J., Liu, X.: Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stochastic Process Appl 128, 2557–2580 (2018)

    Article  MathSciNet  Google Scholar 

  12. Gao, J., Li, S., Sun, X., **e, Y.: Averaging principle for slow-fast stochastic 2D Navier-Stokes equation driven by Lévy noise. Math Methods Appl Sci 44(7), 5475–5500 (2021)

    Article  MathSciNet  Google Scholar 

  13. Gao, P.: Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete Contin Dyn Syst -A 38, 5649–5684 (2018)

    Article  MathSciNet  Google Scholar 

  14. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM J Multiscale Model Simul 6, 577–594 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hairer, M., Li, X.-M.: Averaging dynamics driven by fractional Brownian motion. Ann Probab 48(4), 1826–1860 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hong, W., Li, S., Liu, W., Sun, X.: Central limit type theorem and large deviations principle for multi-scale McKean-Vlasov SDEs. Probab. Theory Related Fields 187(1–2), 133–201 (2023)

  17. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetica 4, 260–279 (1968)

    Google Scholar 

  18. Khasminskii, R.Z., Yin, G.: On averaging principles: an asymptotic expansion approach. SIAM J Math Anal 35, 1534–1560 (2004)

    Article  MathSciNet  Google Scholar 

  19. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun Math Sci 8, 999–1020 (2010)

    Article  MathSciNet  Google Scholar 

  20. Liu, D.: Strong convergence rate of principle of averaging for jump-diffusion processes. Front. Math. China 7(2), 305–320 (2012)

    Article  MathSciNet  Google Scholar 

  21. Liu, W., Röckner, M., Sun, X., **e, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differential Equations 268(6), 2910–2948 (2020)

    Article  MathSciNet  Google Scholar 

  22. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation. I. Ann. Prob. 29, 1061–1085 (2001)

    MathSciNet  Google Scholar 

  23. Pardoux, E., Veretennikov, AYu.: On the Poisson equation and diffusion approximation. 2. Ann. Prob. 31(3), 1166–1192 (2003)

    Article  MathSciNet  Google Scholar 

  24. Pavliotis, G.A., Stuart, A.M.: Multiscale methods: averaging and homogenization. volume 53 Texts in Applied Mathematics, Springer, New York (2008)

    Google Scholar 

  25. Pei, B., Xu, Y., Wu, J.L.: Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles. J. Math. Anal. Appl. 447(1), 243–268 (2017)

    Article  MathSciNet  Google Scholar 

  26. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with lévy noise: an evolution equation approach. Cambridge University Press (2007)

    Book  Google Scholar 

  27. Röckner, M., Sun, X., **e, Y.: Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 57(1), 547–576 (2021)

    Article  MathSciNet  Google Scholar 

  28. Röckner, M., **e, L.: Diffusion approximation for fully coupled stochastic differential equations. Ann. Probab. 49(3), 1205–1236 (2021)

    Article  MathSciNet  Google Scholar 

  29. Shen, G., Wu, J.L., **ao, R., Yin, X.: An averaging principle for neutral stochastic fractional order differential equations with variable delays driven by Lévy noise. Stoch. Dyn 22(4), 225009, 20 (2022)

    Article  Google Scholar 

  30. Shi, Y., Gao, H.: Weak and strong averaging principle for a stochastic coupled fast-slow atmosphere-ocean model with non-Lipschitz Lévy noise. Nonlinear Anal. 218, 112794, 34 (2022)

    Article  Google Scholar 

  31. Sun, X., **e, Y.: Orders of strong and weak averaging principle for multi-scale SPDEs driven by \(\alpha \)-stable process. J. Differential Equations 351, 194–242 (2023)

    Article  MathSciNet  Google Scholar 

  32. Sun, X., **e, L., **e, Y.: Strong and weak convergence rates for slow-fast stochastic differential equations driven by \(\alpha \)-stable process. Bernoulli 28, 343–369 (2022)

    Article  MathSciNet  Google Scholar 

  33. Veretennikov, A.Y.: On the averaging principle for systems of stochastic differential equations. Math. USSR Sborn. 69, 271–284 (1991)

    Article  MathSciNet  Google Scholar 

  34. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differential Equations 253, 1265–1286 (2012)

    Article  MathSciNet  Google Scholar 

  35. Wu, F., Yin, G.: Fast-slow-coupled stochastic functional differential equations. J. Differential Equations 323, 1–37 (2022)

    Article  MathSciNet  Google Scholar 

  36. **, F., Zhu, C.: Jump type stochastic differential equations with non-Lipschitz coefficients: non-confluence, Feller and strong Feller properties, and exponential ergodicity. J. Differential Equations 266(8), 4668–4711 (2019)

    Article  MathSciNet  Google Scholar 

  37. Xu, J., Miao, Y., Liu, J.: Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete Contin. Dyn. Syst. Ser. B 20(7), 2233–2256 (2015)

    MathSciNet  Google Scholar 

  38. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lévy noise. Phys. D 240(17), 1395–1401 (2011)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for their very careful reading of the manuscript and especially for their very valuable suggestions and comments on improving the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (Nos, 12271219, 11931004, 12090010, 12090011), the QingLan Project of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aobin Sun.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Differentiability of \(Y^{x,y}\)

In this subsection, we give the proofs of the differentiability of the solution \(Y^{x,y}_t\) of the frozen equation with respect to parameter x and y.

Proposition 6.1

Under the assumptions B1-B3. Then \(Y^{x,y}_t\) is differentiable with respect to y and x in directions \(l\in \mathbb {R}^m\) and \(l_1\in \mathbb {R}^n\) respectively, which satisfies

$$\begin{aligned} d[\partial _yY_{t}^{x,y}\cdot l]= & {} \partial _{y} f(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)dt+\partial _yg(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)d\tilde{W}_{t}^{2} \nonumber \\+ & {} \int _{\mathcal {Z}_2}\partial _yh_2(x,Y_{t-}^{x,y},z) \cdot (\partial _yY_{t-}^{x,y}\cdot l)\tilde{N}^{2}(dz,dt). \end{aligned}$$
(1.1)

and

$$\begin{aligned} d\left[ \partial _xY_{t}^{x,y}\cdot l_1\right]= & {} \left[ \partial _x f(x,Y_{t}^{x,y})\cdot l_1+\partial _yf(x,Y_{t}^{x,y})\cdot (\partial _xY_{t}^{x,y}\cdot l_1)\right] dt\nonumber \\+ & {} \left[ \partial _x g(x,Y_{t}^{x,y})\cdot l_1+\partial _yg(x,Y_{t}^{x,y})\cdot ( \partial _xY_{t}^{x,y}\cdot l_1)\right] d \tilde{W}_{t}^{2} \nonumber \\+ & {} \int _{\mathcal {Z}_2}\left[ \partial _x h_2(x,Y_{t-}^{x,y},z)\cdot l_1\!+\!\partial _y h_2(x,Y_{t-}^{x,y},z) \cdot (\partial _x Y_{t-}^{x,y}\cdot l_1)\right] \nonumber \\{} & {} \times \tilde{N}^{2}(dt,dz). \end{aligned}$$
(1.2)

Moreover, there exist \(C,\gamma >0\) such that

$$\begin{aligned} \mathbb {E}|\partial _yY_{t}^{x,y}\cdot l|^{\ell }\leqslant 2 e^{-\gamma t}|l|^{\ell },\quad \sup _{t\ge 0}\mathbb {E}|\partial _x Y^{x,y}_t\cdot l_1|^{\ell } \le C|l_1|^{\ell }, \end{aligned}$$
(1.3)

where \(\ell \) is the constant in assumption B1.

Proof

We only prove \(Y^{x,y}_t\) is differentiable with respect to y in direction \(l\in \mathbb {R}^m\) and its directional derivative \(\partial _yY^{x,y}_t\cdot l\) satisfies equation (6.1). Since \(Y^{x,y}_t\) is differentiable with respect to x in direction \(l_1\in \mathbb {R}^n\) and its directional derivative \(\partial _xY^{x,y}_t\cdot l_1\) satisfies equation (6.2) can be proved by a similar argument, thus we omit the details.

In fact, it is sufficient to prove the following result:

$$\begin{aligned} \lim _{\delta \rightarrow 0}\mathbb {E}\left| \frac{Y^{x,y+\delta l}_t-Y^{x,y}_t}{\delta }-\partial _y Y^{x,y}_t\cdot l\right| ^2=0. \end{aligned}$$
(1.4)

To do this, denote \(Z^{\delta ,l}_t:=\frac{Y^{x,y+\delta l}_t-Y^{x,y}_t}{\delta }-\partial _yY_{t}^{x,y}\cdot l\), recall

$$\begin{aligned}\left\{ \begin{array}{l} \displaystyle dY_{t}^{x,y}=f(x,Y_{t}^{x,y})dt+g(x,Y_{t}^{x,y})d \tilde{W}_{t}^{2}+\int _{\mathcal {Z}_2}h_{2}(x,Y_{t-}^{x,y},z)\tilde{N}^{2}(dz,dt),\\ Y_{0}^{x,y}=y,\\ \end{array}\right. \end{aligned}$$

then \(Z^{\delta ,l}_t\) satisfies the following equation:

$$\begin{aligned}\left\{ \begin{array}{l} \displaystyle dZ^{\delta ,l}_t=\left[ \frac{f(x,Y_{t}^{x,y+\delta l})-f(x,Y_{t}^{x,y})}{\delta }-\partial _yf(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right] dt\\ \quad \quad \quad \quad +\left[ \frac{g(x,Y_{t}^{x,y+\delta l})-g(x,Y_{t}^{x,y})}{\delta }-\partial _yg(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right] d\tilde{W}_{t}^{2}\\ \quad \quad \quad \quad +\int _{\mathcal {Z}_2}\left[ \frac{h_2(x,Y_{t-}^{x,y+\delta l},z)-h_2(x,Y_{t-}^{x,y},z)}{\delta }-\partial _yh_2(x,Y_{t-}^{x,y},z)\cdot (\partial _yY_{t-}^{x,y}\cdot l)\right] \tilde{N}^{2}(dz,dt),\\ Z^{\delta ,l}_0=0\\ \end{array}\right. \end{aligned}$$

By Itô’s formula and taking expectation, we have

$$\begin{aligned} \frac{d}{dt}\mathbb {E}|Z^{\delta ,l}_t|^2= & {} 2\mathbb {E}\left\langle \left[ \frac{f(x,Y_{t}^{x,y+\delta l})-f(x,Y_{t}^{x,y})}{\delta }-\partial _yf(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right] , Z^{\delta ,l}_t\right\rangle \nonumber \\{} & {} +\mathbb {E}\left\| \frac{g(x,Y_{t}^{x,y+\delta l})-g(x,Y_{t}^{x,y})}{\delta }-\partial _yg(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right\| ^2\nonumber \\{} & {} +\mathbb {E}\int _{\mathcal {Z}_2}\left| \frac{h_2(x,Y_{t}^{x,y+\delta l},{z})-h_2(x,Y_{t}^{x,y},{z})}{\delta }-\partial _yh_2(x,Y_{t}^{x,y},{z})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right| ^2\nu _2(dz)\nonumber \\ =:{} & {} \sum ^{3}_{i=1}\tilde{I}_i(t). \end{aligned}$$
(1.5)

For the term \(\tilde{I}_1(t)\). By Taylor’s formula, there exists \(\xi \in (0,1)\) such that

$$\begin{aligned} \tilde{I}_1(t)= & {} 2\mathbb {E}\left\langle \left[ \frac{f(x,Y_{t}^{x,y+\delta l})-f(x,Y_{t}^{x,y})}{\delta }-\partial _yf(x,Y_{t}^{x,y})\cdot \frac{Y^{x,y+\delta l}_t-Y^{x,y}_t}{\delta }\right] , Z^{\delta ,l}_t\right\rangle \nonumber \\{} & {} +2\mathbb {E}\left\langle \partial _yf(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t, Z^{\delta ,l}_t\right\rangle \nonumber \\\leqslant & {} 2\mathbb {E}\delta ^{-1} \Vert \partial ^2_yf(x,\xi Y_{t}^{x,y+\delta l}\!\!+(1-\xi )Y_{t}^{x,y})\Vert |Y_{t}^{x,y+\delta l}-Y_{t}^{x,y}|^2| Z^{\delta ,l}_t| \nonumber \\{} & {} +2\mathbb {E}\left\langle \partial _yf(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t, Z^{\delta ,l}_t\right\rangle . \end{aligned}$$
(2.1)

For the terms \(\tilde{I}_2(t)\) and \(\tilde{I}_3(t)\). By a similar argument above, there exist \(\xi _2,\xi _3\in (0,1)\) such that

$$\begin{aligned} \tilde{I}_2(t)\leqslant & {} 2 2\mathbb {E}\left\| \frac{g(x,Y_{t}^{x,y+\delta l})-g(x,Y_{t}^{x,y})}{\delta }-\partial _yg(x,Y_{t}^{x,y})\cdot \frac{Y^{x,y+\delta l}_t-Y^{x,y}_t}{\delta }\right\| ^2\nonumber \\{} & {} +2\mathbb {E}\left\| \partial _yg(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t\right\| ^2\nonumber \\\leqslant & {} 2 2^{-1}\mathbb {E}\delta ^{-2} \Vert \partial ^2_yg(x,\xi _2 Y_{t}^{x,y+\delta l}\!\!+(1-\xi _2)Y_{t}^{x,y})\Vert ^2 |Y_{t}^{x,y+\delta l}-Y_{t}^{x,y}|^4\nonumber \\{} & {} +2\mathbb {E}\left\| \partial _yg(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t\right\| ^2 \end{aligned}$$
(2.2)

and

$$\begin{aligned} \tilde{I}_3(t)\leqslant & {} 2 2\mathbb {E}\int _{\mathcal {Z}_2}\left| \frac{h_2(x,Y_{t}^{x,y+\delta l},z)-h_2(x,Y_{t}^{x,y},z)}{\delta }-\partial _yh_2(x,Y_{t}^{x,y},z)\cdot \frac{Y^{x,y+\delta l}_t-Y^{x,y}_t}{\delta }\right| ^2\nu _2(dz)\nonumber \\{} & {} +2\mathbb {E}\int _{\mathcal {Z}_2}\left| \partial _yh_2(x,Y_{t}^{x,y},z)\cdot Z^{\delta ,l}_t\right| ^2\nu _2(dz)\nonumber \\\leqslant & {} 2 2^{-1}\mathbb {E}\int _{\mathcal {Z}_2}\delta ^{-2} \Vert \partial ^2_yh_2(x,\xi _3 Y_{t}^{x,y+\delta l}\!\!+(1-\xi _3)Y_{t}^{x,y},z)\Vert ^2 |Y_{t}^{x,y+\delta l}-Y_{t}^{x,y}|^4\nu _2(dz)\nonumber \\{} & {} +2\mathbb {E}\int _{\mathcal {Z}_2}\left| \partial _yh_2(x,Y_{t}^{x,y},z)\cdot Z^{\delta ,l}_t\right| ^2\nu _2(dz). \end{aligned}$$
(2.3)

Combining (6.5)-(6.8), then by Young’s inequality, assumption B3, (3.18) and Lemma 3.3, there exists \(k>0\) such that

$$\begin{aligned} \frac{d}{dt}\mathbb {E}|Z^{\delta ,l}_t|^2&\leqslant 2&\frac{\beta }{2}\mathbb {E}|Z^{\delta ,l}_t|^2+C(1+|x|^k+|y|^k)\delta ^2\\{} & {} +2\mathbb {E}\left\langle \partial _yf(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t, Z^{\delta ,l}_t\right\rangle +2\mathbb {E}\left\| \partial _yg(x,Y_{t}^{x,y})\cdot Z^{\delta ,l}_t\right\| ^2\\{} & {} +2\mathbb {E}\int _{\mathcal {Z}_2}\left| \partial _yh_2(x,Y_{t}^{x,y},z)\cdot Z^{\delta ,l}_t\right| ^2\nu _2(dz). \end{aligned}$$

Note that condition (2.8) implies that for any \(x\in \mathbb {R}^n,y\in \mathbb {R}^m, l\in \mathbb {R}^m\)

$$\begin{aligned}{} & {} 2\left\langle \partial _yf(x,y)\cdot l,l\right\rangle +(\ell -1)\Vert \partial _yg(x,y)\cdot l\Vert ^{2}\nonumber \\{} & {} \quad +2^{\ell -3}(\ell -1)\!\int _{\mathcal {Z}_2}\!\!|\partial _yh_{2}(x,y,z)\cdot l|^{2}\nu _2(dz)\le -\beta |l|^{2}, \end{aligned}$$
(2.4)

where \(\ell >8\), thus this implies that

$$\begin{aligned}{} & {} 2\left\langle \partial _yf(x,y)\cdot l,l\right\rangle +2\Vert \partial _yg(x,y)\cdot l\Vert ^{2}\\{} & {} \quad +2\int _{\mathcal {Z}_2}\!\!|\partial _yh_{2}(x,y,z)\cdot l|^{2}\nu _2(dz)\le -\beta |l|^{2}. \end{aligned}$$

Then we have

$$\begin{aligned} \frac{d}{dt}\mathbb {E}|Z^{\delta ,l}_t|^2\leqslant 2 -\frac{\beta }{2}\mathbb {E}|Z^{\delta ,l}_t|^2+C(1+|x|^k+|y|^k)\delta ^2. \end{aligned}$$

By comparison theorem, we have

$$\begin{aligned} \mathbb {E}|Z^{\delta ,l}_t|^2\leqslant 2 C_{\beta }(1+|x|^k+|y|^k)\delta ^2\rightarrow 0,\quad \text {as} \quad \delta \rightarrow 0. \end{aligned}$$

Using Itô’s formula on \(|\partial _yY_{t}^{x,y}\cdot l|^{\ell }\) and taking expectation on both sides, then by (3.4) again, we have

$$\begin{aligned} \frac{d}{dt}\mathbb {E}|\partial _yY_{t}^{x,y}\cdot l|^{\ell }\leqslant & {} 2{\ell }\mathbb {E}\left[ \big |\partial _yY_{t}^{x,y}\cdot l\big |^{\ell -2}\left\langle \partial _yf(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l), \partial _yY_{t}^{x,y}\cdot l\right\rangle \right] \\{} & {} +\frac{{\ell }({\ell }-1)}{2}\mathbb {E}\left[ \big |\partial _yY_{t}^{x,y}\cdot l\big |^{\ell -2}\left\| \partial _yg(x,Y_{t}^{x,y})\cdot (\partial _yY_{t}^{x,y}\cdot l)\right\| ^2\right] \\{} & {} +2^{\ell -4}\ell (\ell -1)\mathbb {E}\Big [|\partial _yY_{t}^{x,y}\cdot l|^{\ell -2} \int _{\mathcal {Z}_2}|\partial _yh_2(x,Y_{t-}^{x,y},z) \cdot (\partial _yY_{t-}^{x,y}\cdot l)|^2\nu _2(dz)\Big ]\\{} & {} +2^{\ell -4}\ell (\ell -1)\mathbb {E} \int _{\mathcal {Z}_2}|\partial _yh_2(x,Y_{t-}^{x,y},z) \cdot (\partial _yY_{t-}^{x,y}\cdot l)|^{\ell }\nu _2(dz). \end{aligned}$$

Note that condition (2.9) implies that for any \(x\in \mathbb {R}^n,y\in \mathbb {R}^m, l\in \mathbb {R}^m\)

$$\begin{aligned} 2^{\ell -3}(\ell -1)\!\int _{\mathcal {Z}_2}\!\!|\partial _yh_{2}(x,y,z)\cdot l|^{\ell }\nu _2(dz)\le L_{h_2}|l|^{\ell }. \end{aligned}$$
(2.5)

By (6.9) and (6.10), we have

$$\begin{aligned} \frac{d}{dt}\mathbb {E}|\partial _yY_{t}^{x,y}\cdot l|^{\ell } \le{} & {} -\frac{\ell \beta }{2}\mathbb {E}\left[ \big |\partial _yY_{t}^{x,y}\cdot l\big |^{\ell }\right] +\frac{\ell L_{h_2}}{2}\mathbb {E}\big |\partial _yY_{t}^{x,y}\cdot l\big |^{\ell }\\ ={} & {} -\frac{\ell (\beta -L_{h_2})}{2}\mathbb {E}\big |\partial _yY_{t}^{x,y}\cdot l\big |^{\ell }. \end{aligned}$$

Then by the comparison theorem, we get

$$\begin{aligned} \mathbb {E}|\partial _yY_{t}^{x,y}\cdot l|^{\ell }\le e^{-\frac{\ell (\beta -L_{h_2})t}{2}}|l|^{\ell }. \end{aligned}$$

Thus the first estimate in (6.3) holds. By a similar argument, we can prove the second estimate in (6.3). The proof is complete. \(\square \)

Remark 6.2

It is worth noting that by a similar argument to that above, using the additional regularity assumptions (2.11) in B3 on the coefficients, we can further prove the differentiability of \(\partial _yY_{t}^{x,y}\cdot l\) and \(\partial _xY_{t}^{x,y}\cdot l_1\) with respect to parameters. Let \(\partial _y\partial _x Y^{x,y}_t\cdot (l_1,l_2)\) be the directional derivative of \(\partial _x Y^{x,y}_t\cdot l_1\) with respect to y in the direction \(l_2\). Let \(\partial ^2_x Y^{x,y}_t\cdot (l_1,l_2)\) be the directional derivative of \(\partial _x Y^{x,y}_t\cdot l_1\) with respect to x in the direction \(l_2\). Let \(\partial _y\partial _{x}^{2}Y_{t}^{x,y}\cdot (l_1,l_2,l_3)\) be the directional derivative of \(\partial ^2_x Y^{x,y}_t\cdot (l_1,l_2)\) with respect to y in the direction \(l_3\). We can easily prove for any unit vectors \(l_1,l_2,l_3\),

$$\begin{aligned}{} & {} \mathbb {E}|\partial _y\partial _{x}Y^{x,y}_t\cdot (l_1,l_2)|^4\le Ce^{-4\gamma t}(1+|y|^{4k}),\\{} & {} \sup _{t\ge 0}\mathbb {E}|\partial ^2_{x}Y^{x,y}_t\cdot (l_1,l_2)|^4\le C(1+|y|^{4k}),\\{} & {} \mathbb {E}|\partial _y\partial ^2_{x}Y^{x,y}_t\cdot (l_1,l_2,l_3)|^2\le Ce^{-2\gamma t}(1+|y|^{4k}), \end{aligned}$$

where \(C,k,\gamma >0\).

1.2 Well-posedness of equation (5.20)

In this subsection, we give the detailed proof of the existence and uniqueness of equation (5.20).

Proposition 6.3

Under the assumptions A1-A3 and B1-B3. For any \(\phi \in C^{2}_p(\mathbb {R}^{n})\), the following Kolmogorov equation

$$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _t u(t,x)=\bar{\mathscr {L}}_1 u(t,x),\quad t\ge 0,x\in \mathbb {R}^n, \\ u(0, x)=\phi (x), \end{array}\right. \end{aligned}$$
(2.6)

admits a unique solution \(u\in C^{1,2}(\mathbb {R}_{+}\times \mathbb {R}^n)\), moreover the solution u is given by

$$ u(t,x)=\mathbb {E}\phi (\bar{X}^x_t), $$

where \(\bar{\mathscr {L}}_1\) is the infinitesimal generator of the transition semigroup of the averaged equation (5.14), which is given by

$$\begin{aligned}{} & {} \bar{\mathscr {L}}_1\phi (x):=\langle \bar{b}(x), D \phi (x)\rangle +\frac{1}{2}\text {Tr}[\bar{\sigma }\bar{\sigma }(x)D^{2}\phi (x)]\\{} & {} \quad \quad \quad \quad \quad \quad +\int _{\mathcal {Z}_1}\left[ \phi (x+h_{1}(x,z))\!-\!\phi (x)\!-\!\langle D \phi (x),h_{1}(x,z)\rangle \right] \nu _1(dz). \end{aligned}$$

Proof

Existence: Using Itô’s formula, it is easy to see \(u(t,x)=\mathbb {E}\phi (\bar{X}^x_t)\) is differentiable with respect to t. Moreover, using the chain rule and \(\phi \in C^{2}_p(\mathbb {R}^{n})\), it is easy to see u(tx) is first and second differentiable with respect to x. Hence \(u\in C^{1,2}(\mathbb {R}_{+}\times \mathbb {R}^n)\). In order to prove u(tx) solves equation (6.11), we use the definition of generator \(\bar{\mathscr {L}}_1\), more precisely, by the Markov property and homogeneous property, we have for any \(s>0\),

$$\begin{aligned} \frac{\mathbb {E}u(t,\bar{X}^x_s)-u(t,x)}{s}= & {} \frac{\mathbb {E}\left[ \mathbb {E}\phi (\bar{X}^{y}_{t})|_{y=\bar{X}^x_s}\right] -\mathbb {E}\phi (\bar{X}^x_t)}{s}\\= & {} \frac{\mathbb {E}\left[ \mathbb {E}\phi (\bar{X}^x_{t+s})| \mathscr {F}_{s}\right] -\mathbb {E}\phi (\bar{X}^x_t)}{s}\\= & {} \frac{\mathbb {E}\phi (\bar{X}^x_{t+s})-\mathbb {E}\phi (\bar{X}^x_t)}{s}\\= & {} \frac{u(t+s,x)-u(t,x)}{s}. \end{aligned}$$

Then letting \(s\rightarrow 0\), we get (6.11).

Uniqueness: Let \(w(t,x)\in C^{1,2}(\mathbb {R}_{+}\times \mathbb {R}^n)\) be another solution of (6.11) with \(w(0,x)=\phi (x)\). For any fixed \(t>0\), define

$$ \tilde{w}(s,x)=w(t-s,x), s\in [ 0,t], $$

then it is easy to check

$$ \partial _s \tilde{w}(s,x)+\bar{\mathscr {L}}_1 \tilde{w}(s,x)=0,\quad \forall s>0, x\in \mathbb {R}^n. $$

Then using Itô’s formula on \(\tilde{w}(t, \bar{X}^{x}_t)\) and taking expectation, we have

$$\begin{aligned} \mathbb {E}\tilde{w}(t, \bar{X}^{x}_t)= & {} \tilde{w}(0, x)+\int ^t_0 \left[ \partial _s \tilde{w}(s,\bar{X}^{x}_s)+\bar{\mathscr {L}}_1 \tilde{w}(s,\bar{X}^{x}_s)\right] ds=\tilde{w}(0, x). \end{aligned}$$

Note that by the definition of \(\tilde{w}\), it follows

$$ \mathbb {E}\tilde{w}(t, \bar{X}^{x}_t)=\mathbb {E}\phi (\bar{X}^{x}_t),\quad \tilde{w}(0, x)=w(t,x). $$

Hence, we obtain \(w(t,x)=u(t,x)\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Sun, X., Wang, L. et al. Asymptotic Behavior for Multi-scale SDEs with Monotonicity Coefficients Driven by Lévy Processes. Potential Anal 61, 111–152 (2024). https://doi.org/10.1007/s11118-023-10105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-023-10105-5

Keywords

Mathematics Subject Classification (2010)

Navigation