Log in

Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider solutions for discrete systems arising from multi-term time-fractional diffusion equations. Using discrete sine transform techniques, we find that all-at-once systems of such equations have a structure similar to that of diagonal-plus-Toeplitz matrices. We establish a generalized circulant approximate inverse preconditioner for the all-at-once systems. Through a detailed analysis of the preconditioned matrices, we show that the spectrum of the obtained preconditioned matrices is clustered around one. We give some numerical examples to demonstrate the effectiveness of the proposed preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data of codes involved in this paper are available from the corresponding author on reasonable request.

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  2. Caponetto, R.: Fractional order systems: modeling and control applications, vol. 72. World Scientific, (2010)

  3. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, (2022)

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, (2006)

  5. Luchko, Y.F., Rivero, M., Trujillo, J.J., Velasco, M.P.: Fractional models, non-locality, and complex systems. Comput. Math. Appl. 59(3), 1048–1056 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bonilla, B., Rivero, M., Rodríguez-Germá, L., Trujillo, J.J.: Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 187(1), 79–88 (2007)

    MathSciNet  Google Scholar 

  7. Zhao, L., Liu, F., Anh, V.V.: Numerical methods for the two-dimensional multi-term time-fractional diffusion equations. Comput. Math. Appl. 74(10), 2253–2268 (2017)

    Article  MathSciNet  Google Scholar 

  8. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166(1), 209–219 (2004)

    Article  MathSciNet  Google Scholar 

  9. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)

    Google Scholar 

  10. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)

    Article  Google Scholar 

  11. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10) (2003)

  12. Zhao, Y.-L., Zhu, P.-Y., Gu, X.-M., Zhao, X.-L., Jian, H.-Y.: A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation. J. Sci. Comput. 83, 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  13. Gu, X.-M., Zhao, Y.-L., Zhao, X.-L., Carpentieri, B., Huang, Y.-Y.: A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations. Numer. Math. Theor. Meth. Appl. (2020)

  14. Donatelli, M., Krause, R., Mazza, M., Trotti, K.: All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations. Calcolo 58, 1–25 (2021)

    Article  MathSciNet  Google Scholar 

  15. Shirilord, A., Dehghan, M.: Double parameter splitting (DPS) iteration method for solving complex symmetric linear systems. Appl. Numer. Math. 171, 176–192 (2022)

    Article  MathSciNet  Google Scholar 

  16. Wang, T., Zheng, Q., Lu, L.: A new iteration method for a class of complex symmetric linear systems. J. Comput. Appl. Math. 325, 188–197 (2017)

    Article  MathSciNet  Google Scholar 

  17. Dehghan, M., Hajarian, M.: Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation A1X1B1+ A2X2B2= C. Math. Comput. Model. 49(9–10), 1937–1959 (2009)

    Article  Google Scholar 

  18. Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. Appl. Numer. Math. 158, 425–438 (2020)

    Article  MathSciNet  Google Scholar 

  19. Dehghan, M., Shirilord, A.: A new approximation algorithm for solving generalized Lyapunov matrix equations. J. Comput. Appl. Math. 404, 113898 (2022)

    Article  MathSciNet  Google Scholar 

  20. Shirilord, A., Dehghan, M.: Combined real and imaginary parts method for solving generalized Lyapunov matrix equation. Appl. Numer. Math. 181, 94–109 (2022)

    Article  MathSciNet  Google Scholar 

  21. Dehghan, M., Hajarian, M.: On the generalized bisymmetric and skew-symmetric solutions of the system of generalized Sylvester matrix equations. Linear Multilinear Algebra 59(11), 1281–1309 (2011)

    Article  MathSciNet  Google Scholar 

  22. Dehghan, M., Shirilord, A.: The use of homotopy analysis method for solving generalized Sylvester matrix equation with applications. Eng. Comput., 1–18 (2021)

  23. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Y., Zhang, Y., Liu, F., Turner, I., Tang, Y., Anh, V.: Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput. Math. Appl. 73(6), 1087–1099 (2017)

    Article  MathSciNet  Google Scholar 

  25. Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer. Algorithms 74, 1145–1168 (2017)

    Article  MathSciNet  Google Scholar 

  26. Chen, R., Liu, F., Anh, V.: Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications. J. Comput. Appl. Math. 352, 437–452 (2019)

    Article  MathSciNet  Google Scholar 

  27. Chan, R.H., Ng, M.K., Wong, C.: Sine transform based preconditioners for symmetric Toeplitz systems. Linear Algebra Appl. 232, 237–259 (1996)

    Article  MathSciNet  Google Scholar 

  28. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  29. Pan, J., Ke, R., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), 2698–2719 (2014)

    Article  MathSciNet  Google Scholar 

  30. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  31. Bai, Z.-Z., Lu, K.-Y., Pan, J.-Y.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24(4), 2093 (2017)

    Article  MathSciNet  Google Scholar 

  32. Lin, X.-L., Ng, M.K., Sun, H.-W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT Numer. Math. 58(3), 729–748 (2018)

    Article  MathSciNet  Google Scholar 

  33. **, X.-Q., Lin, F.-R., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18(2), 469–488 (2015)

    Article  MathSciNet  Google Scholar 

  34. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, (1974)

  35. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  Google Scholar 

  36. Pang, H.-K., Qin, H.-H., Sun, H.-W., Ma, T.-T.: Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations. Comput. Math. Appl. 85, 18–29 (2021)

    Article  MathSciNet  Google Scholar 

  37. Saad, Y.: Iterative methods for sparse linear systems. SIAM, (2003)

  38. Bini, D.A., Latouche, G., Meini, B.: Numerical methods for structured Markov chains. OUP Oxford, (2005)

  39. Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comp. 10(1), 104–119 (1989)

    Article  MathSciNet  Google Scholar 

  40. Strohmer, T.: Four short stories about Toeplitz matrix calculations. Linear Algebra Appl. 343, 321–344 (2002)

    Article  MathSciNet  Google Scholar 

  41. Varah, J.M.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11(1), 3–5 (1975)

    Article  MathSciNet  Google Scholar 

  42. Sahoo, P., Riedel, T.: Mean value theorems and functional equations. World Scientific, (1998)

Download references

Acknowledgements

The author wants to thank to anonymous reviewers for their valuable suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (No. 11771193), the Fundamental Research Funds for the Central Universities (No. lzujbky-2018-31), and the Natural Science Foundation of Gansu Province (No. 23JRRA1104).

Author information

Authors and Affiliations

Authors

Contributions

DG and G-FZ wrote the main manuscript text and Z-ZL prepared Tables 1-8 and Figure 1. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Di Gan or Guo-Feng Zhang.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.    Detailed proof of Lemma 4.3

Appendix.    Detailed proof of Lemma 4.3

Lemma A.1

Let \(B_1\) and \(\widetilde{A}\) be defined by (21) and (16), respectively. Assume that \(\phi (x,y) \in C^1\) is a smooth binary function on \([a,b]\times [0,T]\). Then, for a given \(\varepsilon >0\), there exist two constants \(\hat{c}\), \(\check{c}\) and an integer l such that

$$\begin{aligned} \left\| B_1- \widetilde{A}^{-1} \right\| _{\infty } \le \varepsilon /2 + l\hat{c}h + l\check{c}\tau . \end{aligned}$$

Proof

Consider

$$\begin{aligned} \begin{aligned} \left\| B_1- \widetilde{A}^{-1} \right\| _{\infty }&= \max _{1\le i\le M,1\le j\le N} \left\| \left( e_i\otimes e_j \right) ^T\left( B_1 - \widetilde{A}^{-1} \right) \right\| _1\\&= \max _{1\le i\le M,1\le j\le N}\left\| \left( e_i\otimes e_j \right) ^T\left( K_{j,i}^{-1} - \widetilde{A}^{-1} \right) \right\| _1\\&= \max _{1\le i\le M,1\le j\le N}\left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{A} - K_{j,i} \right) K_{j,i}^{-1} \right\| _1\\&= \max _{1\le i\le M,1\le j\le N}\left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) K_{j,i}^{-1} \right\| _1\\&\le \max _{1\le i\le M,1\le j\le N}\left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) \right\| _1 \left\| K_{j,i}^{-1} \right\| _{\infty }. \end{aligned} \end{aligned}$$
(A1)

From the analysis in subsection 4.1, we know that both \(\left\| K_{j,i}^{-1} \right\| _{\infty }\) and \(\left\| \widetilde{A}^{-1}\right\| _{\infty }\) are bounded and we let \(\left\| K_{j,i}^{-1} \right\| _{\infty } \le c_4\) and \(\left\| \widetilde{A}^{-1}\right\| _{\infty } \le c_5\), respectively. Let

$$\widetilde{A}^{-1}((i-1)M+j,(p-1)M+q) = \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}$$

denote the \(((i-1)M+j)\)th row and \(((p-1)M+q)\)th column entry of matrix \(\widetilde{A}^{-1}\). It follows from (34) that

$$\begin{aligned}{} & {} \left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) \right\| _1 = \sum _{p=1}^{M}\sum _{q=1}^{N}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| = \sum _{p=1}^{i-l}\sum _{q=1}^{j-l}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| \nonumber \\{} & {} + \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| + \sum _{p=1}^{i-l}\sum _{q=j+l}^{N}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| \nonumber \\{} & {} + \sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| + \sum _{p=i-l+1}^{i+l-1}\sum _{q=j-l+1}^{j+l-1}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| \nonumber \\{} & {} + \sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| + \sum _{p=i+l}^{M}\sum _{q=1}^{j-l}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| \nonumber \\{} & {} + \sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| +\sum _{p=i+l}^{M}\sum _{q=j+l}^{N}\left| \left( \phi _q^p-\phi _j^i \right) \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p} \right| \nonumber \\{} & {} \le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=1}^{j-l} \dfrac{c_p}{[1+(i-p)M+(j-q)]^{s}} + \max _{\begin{array}{c} 1\le p\le i-l \\ j+l-1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=j+l}^{N} \dfrac{c_p}{[1+(i-p)M+(q-j)]^{s}} + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ 1\le q\le j-l \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} +\!\! \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p\!-\!\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j+l\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N} \!\left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\!\right| \nonumber \\{} & {} +\!\! \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=1}^{j-l} \dfrac{c_p}{[1+(p-i)M+(j-q)]^{s}} \!\!+\!\! \max _{\begin{array}{c} i+l\le p\le M \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=j+l}^{N} \dfrac{c_p}{[1+(p-i)M+(q-j)]^{s}}. \end{aligned}$$
(A2)

Using the inequality \(\sum _{a = b+1}^{\infty }\frac{1}{a^{c+1}}\le \frac{1}{cb^c}\) [29], we have

$$\begin{aligned} \begin{aligned}&\left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) \right\| _1 \le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}} \\&+ \max _{\begin{array}{c} 1\le p\le i-l \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}}\\&+ \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ 1\le q\le j-l \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l}\left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \left\| \widetilde{A}^{-1}\right\| _{\infty }\\&+ \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j+l\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N}\left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}}\\&+ \max _{\begin{array}{c} i+l\le p\le M \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1}\left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}}. \end{aligned} \end{aligned}$$
(A3)

We will separate the terms on the right-hand side of (A3) into two parts for individual analysis. The first part is as follows:

$$\begin{aligned}{} & {} \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p\!\!-\!\!\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}} \!\!+\!\! \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}}\nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{k=1+lM+l}^{\infty } \dfrac{c_p}{k^{s}} \le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \dfrac{4c_p}{\alpha _1(M+1)^{\alpha _1}l^{\alpha _1}}. \end{aligned}$$
(A4)

The second part is as follows:

$$\begin{aligned}{} & {} \max _{\begin{array}{c} 1\le p\le i-l \\ j+l-1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ 1\le q\le j-l \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j+l\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} + \max _{\begin{array}{c} i+l\le p\le M \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1} \left| \left( \widetilde{A}^{-1}\right) _{j,i}^{q,p}\right| \nonumber \\{} & {} \le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1} \dfrac{c_p}{\left[ 1+(i-p)M+\left| j-q \right| \right] ^s}\nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l} \dfrac{c_p}{\left[ 1+\left| i-p\right| M +j-q\right] ^s}\nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N} \dfrac{c_p}{\left[ 1+\left| i-p\right| M +q-j\right] ^s}\nonumber \\{} & {} + \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1} \dfrac{c_p}{\left[ 1+(p-i)M +\left| j-q \right| \right] ^s} \end{aligned}$$
(A5)

Consider the first term at the right end of (A5).

$$\begin{aligned} \begin{aligned}&\sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j+l-1} \dfrac{c_p}{\left[ 1+(i-p)M+\left| j-q \right| \right] ^s} = \sum _{p=1}^{i-l}\sum _{q=j-l+1}^{j-1}\dfrac{c_p}{\left[ 1+(i-p)M+j-q \right] ^s}\\&+ \sum _{p=1}^{i-l}\dfrac{c_p}{\left[ 1+(i-p)M \right] ^s} + \sum _{p=1}^{i-l}\sum _{q=j+1}^{j+l-1}\dfrac{c_p}{\left[ 1+(i-p)M+q-j \right] ^s}\\&\le (l-1)\sum _{i-l}^{p=1}\dfrac{c_p}{\left[ 1+(i-p)M+1 \right] ^s} + \dfrac{c_p}{\alpha _1(lM)^{\alpha _1}}+(l-1)\sum _{i-l}^{p=1}\dfrac{c_p}{\left[ 1+(i-p)M+1 \right] ^s}\\&\le \dfrac{2(l-1)c_p}{\alpha _1(lM+1)^{\alpha _1}}+\dfrac{c_p}{\alpha _1(lM)^{\alpha _1}} \end{aligned} \end{aligned}$$
(A6)

Similarly, we can obtain the other parts of (A5) with

$$\begin{aligned} \begin{aligned}&\sum _{p=i-l+1}^{i+l-1}\sum _{q=1}^{j-l} \dfrac{c_p}{\left[ 1+\left| i-p\right| M +j-q\right] ^s} = \sum _{p=i-l+1}^{i-1}\sum _{q=1}^{j-l}\dfrac{c_p}{\left[ 1+(i-p)M +j-q \right] ^s} + \sum _{q=1}^{j-l}\dfrac{c_p}{\left[ 1+j-q \right] ^s}\\&+\sum _{p=i-l+1}^{i-1}\sum _{q=1}^{j-l}\dfrac{c_p}{\left[ 1+(i-p)M +j-q \right] ^s} \le \dfrac{2(l-1)c_p}{\alpha _1(M+l)^{\alpha _1}} + \dfrac{c_p}{\alpha _1l^{\alpha _1}}, \end{aligned} \end{aligned}$$
(A7)
$$\begin{aligned} \begin{aligned}&\sum _{p=i-l+1}^{i+l-1}\sum _{q=j+l}^{N} \dfrac{c_p}{\left[ 1+\left| i-p\right| M +q-j\right] ^s}\le \dfrac{2(l-1)c_p}{\alpha _1(M+l)^{\alpha _1}} + \dfrac{c_p}{\alpha _1l^{\alpha _1}} \end{aligned} \end{aligned}$$
(A8)

and

$$\begin{aligned} \begin{aligned}&\sum _{p=i+l}^{M}\sum _{q=j-l+1}^{j+l-1} \dfrac{c_p}{\left[ 1+(p-i)M +\left| j-q \right| \right] ^s}\le \dfrac{2(l-1)c_p}{\alpha _1(lM+1)^{\alpha _1}}+\dfrac{c_p}{\alpha _1(lM)^{\alpha _1}}. \end{aligned} \end{aligned}$$
(A9)

It can be seen from (A3)–(A9) that when M tends to infinity, we have

$$\begin{aligned} \begin{aligned} \left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) \right\| _1&\le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \dfrac{4c_p}{\alpha _1(M+1)^{\alpha _1}l^{\alpha _1}} \\&+\max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \left( \dfrac{2(l-1)c_p}{\alpha _1(lM+1)^{\alpha _1}}+\dfrac{c_p}{\alpha _1(lM)^{\alpha _1}}\right) \\&+\max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \left( \dfrac{4(l-1)c_p}{\alpha _1(M+l)^{\alpha _1}} + \dfrac{2c_p}{\alpha _1l^{\alpha _1}}\right) \\&+\max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \left( \dfrac{2(l-1)c_p}{\alpha _1(lM+1)^{\alpha _1}}+\dfrac{c_p}{\alpha _1(lM)^{\alpha _1}}\right) \\&\le \max _{\begin{array}{c} 1\le p\le M \\ 1\le q\le N \end{array}}\left| \phi _q^p-\phi _j^i \right| \dfrac{2c_p}{\alpha _1l^{\alpha _1}} + \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \left\| \widetilde{A}^{-1}\right\| _{\infty } \end{aligned} \end{aligned}$$
(A10)

From the mean value theorem for binary functions [42], we have

$$\begin{aligned} \begin{aligned} \max _{\begin{array}{c} i-l+1\le p\le i+l-1 \\ j-l+1\le q\le j+l-1 \end{array}}\left| \phi _q^p-\phi _j^i \right| \le \max _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _x(x,y) \right| lh + \max _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _y(x,y) \right| l\tau \end{aligned} \end{aligned}$$
(A11)

For any given \(\varepsilon \ge 0\), let l be the integer satisfying

$$\begin{aligned} l^{\alpha _1}>\dfrac{8c_p}{\alpha _1 \varepsilon }\max _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi (x,y) \right| c_4. \end{aligned}$$
(A12)

Then,

$$\begin{aligned} \begin{aligned} \left\| \left( e_i\otimes e_j \right) ^T \widetilde{A}^{-1}\left( \widetilde{D} - \phi _j^iI_{NM} \right) \right\| _1 \le \dfrac{\varepsilon }{2} + \max \limits _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _x(x,y) \right| lhc_4c_5 + \max \limits _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _y(x,y) \right| l\tau c_4c_5. \end{aligned} \end{aligned}$$
(A13)

Let \(\hat{c} = \max \limits _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _x(x,y) \right| c_4c_5\) and \(\check{c} = \max \limits _{\begin{array}{c} x \in \left[ a,b\right] \\ y \in \left[ 0,T\right] \end{array}}\left| \phi _y(x,y) \right| c_4c_5\), we naturally get the conclusion of Lemma A.1. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, D., Zhang, GF. & Liang, ZZ. Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations. Numer Algor 96, 1499–1531 (2024). https://doi.org/10.1007/s11075-023-01675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01675-x

Keywords

Navigation