Log in

Orbital perturbation coupling of primary oblateness and solar radiation pressure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Solar radiation pressure can have a substantial long-term effect on the orbits of high area-to-mass ratio spacecraft, such as solar sails. We present a study of the coupling between radiation pressure and the gravitational perturbation due to polar flattening. Removing the short-period terms via perturbation theory yields a time-dependent two-degree-of-freedom Hamiltonian, depending on one physical and one dynamical parameter. While the reduced model is non-integrable in general, assuming coplanar orbits (i.e., both Spacecraft and Sun on the equator) results in an integrable invariant manifold. We discuss the qualitative features of the coplanar dynamics, and find three regions of the parameters space characterized by different regimes of the reduced flow. For each regime, we identify the fixed points and their character. The fixed points represent frozen orbits, configurations for which the long-term perturbations cancel out to the order of the theory. They are advantageous from the point of view of station kee**, allowing the orbit to be maintained with minimal propellant consumption. We complement existing studies of the coplanar dynamics with a more rigorous treatment, deriving the generating function of the canonical transformation that underpins the use of averaged equations. Furthermore, we obtain an analytical expression for the bifurcation lines that separate the regions with different qualitative flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

No datasets, other than the numerical results presented in the figures, have been generated as part of this research. The information provided in this manuscript is sufficient to reproduce those results.

Notes

  1. nssdc.gsfc.nasa.gov/nmc/spacecraft/1958-002B; last accessed December 25, 2023.

  2. https://space.jpl.nasa.gov/msl/QuickLooks/echoQL; last accessed December 25, 2023.

  3. Some authors use the supplementary angle of \(\theta \).

References

  1. Aksnes, K.: Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. Celest. Mech. 13, 89–104 (1976). https://doi.org/10.1007/BF01228536

    Article  Google Scholar 

  2. Alessi, E.M., Colombo, C., Rossi, A.: Phase space description of the dynamics due to the coupled effect of the planetary oblateness and the solar radiation pressure perturbations. Celest. Mech. Dyn. Astron. 131(9), 43 (2019). https://doi.org/10.1007/s10569-019-9919-z

    Article  MathSciNet  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. In: Graduate Texts in Mathematics, vol. 60, 2nd edn., Springer-Verlag, New York (1989). https://doi.org/10.1007/978-1-4757-2063-1

  4. Boccaletti, D., Pucacco, G.: Theory of orbits. Volume 2: Perturbative and geometrical methods, 1st edn., Astronomy and Astrophysics Library. Springer-Verlag, Berlin Heidelberg New York (2002)

  5. Breakwell, J.V., Vagners, J.: On error bounds and initialization in satellite orbit theories. Celest. Mech. 2, 253–264 (1970). https://doi.org/10.1007/BF01229499

    Article  Google Scholar 

  6. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959). https://doi.org/10.1086/107958

    Article  MathSciNet  Google Scholar 

  7. Brouwer, D.: Analytical study of resonance caused by solar radiation pressure. In: Roy, M. (ed.) Dynamics of Satellites/Dynamique des Satellites, IUTAM Symposia (International Union of Theoretical and Applied Mechanics), pp. 34–39. Springer, Berlin, Heidelberg (1963). https://doi.org/10.1007/978-3-642-48130-7_4

  8. Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40(1), 1–48 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    Article  Google Scholar 

  9. Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astron. J. 67, 391–392 (1962). https://doi.org/10.1086/108745

    Article  Google Scholar 

  10. Chamberlain, J.W., Bishop, J.: Radiation pressure dynamics in planetary exospheres. II—closed solutions for the evolution of orbital elements. Icarus 106, 419–427 (1993). https://doi.org/10.1006/icar.1993.1182

    Article  Google Scholar 

  11. Coffey, S.L., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control. Dyn. 5(4), 366–371 (1982). https://doi.org/10.2514/3.56183

    Article  MathSciNet  Google Scholar 

  12. Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. 39(4), 365–406 (1986). https://doi.org/10.1007/BF01230483

    Article  MathSciNet  Google Scholar 

  13. Colombo, C., Lücking, C., McInnes, C.R.: Orbital dynamics of high area-to-mass ratio spacecraft with \(J_2\) and solar radiation pressure for novel Earth observation and communication services. Acta Astronaut. 81(1), 137–150 (2012). https://doi.org/10.1016/j.actaastro.2012.07.009

    Article  Google Scholar 

  14. Cook, G.E.: Luni-solar perturbations of the orbit of an earth satellite. Geophys. J 6, 271–291 (1962). https://doi.org/10.1111/j.1365-246X.1962.tb00351.x

    Article  Google Scholar 

  15. Cushman, R.: Reduction, Brouwer’s Hamiltonian, and the critical inclination. Celest. Mech. 31(4), 401–429 (1983). https://doi.org/10.1007/BF01230294

    Article  MathSciNet  Google Scholar 

  16. Danby, J.M.A.: Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond (1992)

    Google Scholar 

  17. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969). https://doi.org/10.1007/BF01230629

    Article  MathSciNet  Google Scholar 

  18. Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24(2), 111–153 (1981). https://doi.org/10.1007/BF01229192

    Article  MathSciNet  Google Scholar 

  19. Deprit, A.: The reduction to the rotation for planar perturbed Keplerian systems. Celest. Mech. 29, 229–247 (1983). https://doi.org/10.1007/BF01229137

    Article  MathSciNet  Google Scholar 

  20. Deprit, A.: Dynamics of orbiting dust under radiation pressure. In: Berger, A. (ed.) The Big-Bang and Georges Lemaître, pp. 151–180. Springer, Dordrecht (1984). https://doi.org/10.1007/978-94-009-6487-7_14

  21. Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166–206 (1970). https://doi.org/10.1007/BF01229494

    Article  Google Scholar 

  22. Di Nino, S., Luongo, A.: Nonlinear dynamics of a base-isolated beam under turbulent wind flow. Nonlinear Dyn. 107(2), 1529–1544 (2022). https://doi.org/10.1007/s11071-021-06412-4

    Article  Google Scholar 

  23. Feng, J., Hou, X.Y.: Secular dynamics around small bodies with solar radiation pressure. Commun. Nonlinear Sci. Numer. Simul. 76, 71–91 (2019). https://doi.org/10.1016/j.cnsns.2019.02.011

    Article  MathSciNet  Google Scholar 

  24. Ferraz Mello, S.: Analytical study of the earth’s shadowing effects on satellite orbits. Celest. Mech. 5, 80–101 (1972). https://doi.org/10.1007/BF01227825

    Article  Google Scholar 

  25. Ferraz-Mello, S.: Canonical Perturbation Theories-Degenerate Systems and Resonance. Astrophysics and Space Science Library, vol. 345. Springer, New York (2007)

    Book  Google Scholar 

  26. Ferrer, S., Lara, M.: Integration of the rotation of an earth-like body as a perturbed spherical rotor. Astron. J. 139(5), 1899–1908 (2010). https://doi.org/10.1088/0004-6256/139/5/1899

    Article  Google Scholar 

  27. Ferrer, S., Lara, M., Palacián, J., Juan, J.F.S., Viartola, A., Yanguas, P.: The Hénon and Heiles problem in three dimensions. II. Relative equilibria and bifurcations in the reduced system. Int. J. Bifurc. Chaos 08(6), 1215–1229 (1998). https://doi.org/10.1142/s0218127498000954

    Article  Google Scholar 

  28. Giorgilli, A., Galgani, L.: Formal integrals for an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267–280 (1978). https://doi.org/10.1007/BF01232832

    Article  MathSciNet  Google Scholar 

  29. Gkolias, I., Alessi, E.M., Colombo, C.: Dynamical taxonomy of the coupled solar radiation pressure and oblateness problem and analytical deorbiting configurations. Celest. Mech. Dyn. Astron. 132(11), 55 (2020). https://doi.org/10.1007/s10569-020-09992-2

    Article  MathSciNet  Google Scholar 

  30. Hamilton, D.P.: Motion of dust in a planetary magnetosphere: orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn’s E ring. Icarus 101(2), 244–264 (1993). https://doi.org/10.1006/icar.1993.1022

    Article  Google Scholar 

  31. Hamilton, D.P., Krivov, A.V.: Circumplanetary dust dynamics: effects of solar gravity, radiation pressure, planetary oblateness, and electromagnetism. Icarus 123(2), 503–523 (1996). https://doi.org/10.1006/icar.1996.0175

    Article  Google Scholar 

  32. Heiligers, J., Fernandez, J.M., Stohlman, O.R., Wilkie, W.K.: Trajectory design for a solar-sail mission to asteroid 2016 HO\(_{3}\). Astrodynamics 3(3), 231–246 (2019). https://doi.org/10.1007/s42064-019-0061-1

    Article  Google Scholar 

  33. Henrard, J.: On a perturbation theory using Lie transforms. Celest. Mech. 3, 107–120 (1970). https://doi.org/10.1007/BF01230436

    Article  MathSciNet  Google Scholar 

  34. Hori, G.I.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)

    Google Scholar 

  35. Hughes, S.: Satellite orbits perturbed by direct solar radiation pressure—general expansion of the disturbing function. Planet. Space Sci. 25, 809–815 (1977). https://doi.org/10.1016/0032-0633(77)90034-4

    Article  Google Scholar 

  36. Jastrow, R., Bryant, R.: Variations in the orbit of the echo satellite. J. Geophys. Res. 65, 3512 (1960). https://doi.org/10.1029/JZ065i010p03512

    Article  Google Scholar 

  37. Kahn, P.B., Zarmi, Y.: Nonlinear dynamics: a tutorial on the method of normal forms. Am. J. Phys. 68(10), 907–919 (2000). https://doi.org/10.1119/1.1285895

    Article  Google Scholar 

  38. Kamel, A.A.: Perturbation method in the theory of nonlinear oscillations. Celest. Mech. 3, 90–106 (1970). https://doi.org/10.1007/BF01230435

    Article  Google Scholar 

  39. Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astron. J. 67, 300–303 (1962). https://doi.org/10.1086/108729

    Article  MathSciNet  Google Scholar 

  40. Kelly, T.S.: A note on first-order normalizations of perturbed Keplerian systems. Celest. Mech. Dyn. Astron. 46, 19–25 (1989). https://doi.org/10.1007/BF02426708

    Article  MathSciNet  Google Scholar 

  41. Kopp, G., Lean, J.L.: A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38(1), L01706 (2011). https://doi.org/10.1029/2010GL045777

    Article  Google Scholar 

  42. Kozai, Y.: Effects of solar radiation pressure on the motion of an artificial satellite. SAO Spec. Rep. 56, 25–34 (1961)

    Google Scholar 

  43. Kozai, Y.: Mean values of cosine functions in elliptic motion. Astron. J. 67, 311–312 (1962). https://doi.org/10.1086/108731

    Article  MathSciNet  Google Scholar 

  44. Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67, 446–461 (1962). https://doi.org/10.1086/108753

    Article  MathSciNet  Google Scholar 

  45. Krivov, A.V., Getino, J.: Orbital evolution of high-altitude balloon satellites. Astron. Astrophys. 318, 308–314 (1997)

    Google Scholar 

  46. Kubo-oka, T., Sengoku, A.: Solar radiation pressure model for the relay satellite of SELENE. Earth Planets Space 51, 979–986 (1999). https://doi.org/10.1186/BF03351568

    Article  Google Scholar 

  47. Kummer, M.: On resonant non linearly coupled oscillators with two equal frequencies. Commun. Math. Phys. 48(53–79), 1978 (1976). https://doi.org/10.1007/BF01609411. (Erratum: Communications in Mathematical Physics 60, 192)

    Article  MathSciNet  Google Scholar 

  48. Lara, M.: A Hopf variables view on the libration points dynamics. Celest. Mech. Dyn. Astron. 129(3), 285–306 (2017). https://doi.org/10.1007/s10569-017-9778-4

    Article  MathSciNet  Google Scholar 

  49. Lara, M.: Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dyn. 101(2), 1501–1524 (2020). https://doi.org/10.1007/s11071-020-05857-3

    Article  MathSciNet  Google Scholar 

  50. Lara, M.: Brouwer’s satellite solution redux. Celest. Mech. Dyn. Astron. 133(47), 1–20 (2021). https://doi.org/10.1007/s10569-021-10043-7

    Article  MathSciNet  Google Scholar 

  51. Lara, M.: Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction. The method of Lie Transforms, De Gruyter Studies in Mathematical Physics, vol. 54, 1 edn. De Gruyter, Berlin/Boston (2021). https://doi.org/10.1515/9783110668513-006

  52. Lara, M., Fantino, E., Flores, R.: Nonlinear Effects of the Central Body Oblateness on the Coplanar Dynamics of Solar Sails. In: Lacarbonara, W. (ed.) Advances in Nonlinear Dynamics, Volume I, no. 12 in NODYCON Conference Proceedings. Springer Nature (2024). https://doi.org/10.1007/978-3-031-50631-4_12

  53. Lara, M., Masat, A., Colombo, C.: A torsion-based solution to the hyperbolic regime of the \(J_2\)-problem. Nonlinear Dyn. 111, 9377–9393 (2023). https://doi.org/10.1007/s11071-023-08325-w

    Article  Google Scholar 

  54. Lara, M., Pérez, I.L., López, R.: Higher order approximation to the Hill problem dynamics about the libration points. Commun. Nonlinear Sci. Numer. Simul. 59, 612–628 (2018). https://doi.org/10.1016/j.cnsns.2017.12.007

    Article  MathSciNet  Google Scholar 

  55. Lara, M., Rosengren, A.J., Fantino, E.: Non-singular recursion formulas for third-body perturbations in mean vectorial elements. Astron. Astrophys. 634(Article A61), 1–9 (2020). https://doi.org/10.1051/0004-6361/201937106

    Article  Google Scholar 

  56. Lumme, K.: On the formation of Saturn’s rings. Astrophys. Space Sci. 15(3), 404–414 (1972). https://doi.org/10.1007/BF00649769

    Article  Google Scholar 

  57. Lyddane, R.H., Cohen, C.J.: Numerical comparison between Brouwer’s theory and solution by Cowell’s method for the orbit of an artificial satellite. Astron. J. 67, 176–177 (1962). https://doi.org/10.1086/108689

    Article  MathSciNet  Google Scholar 

  58. Marchesiello, A., Pucacco, G.: Bifurcation sequences in the symmetric 1:1 Hamiltonian resonance. Int. J. Bifurc. Chaos 26, 1630011–1562 (2016). https://doi.org/10.1142/S0218127416300111

    Article  MathSciNet  Google Scholar 

  59. Massé, C., Sharf, I., Deleflie, F.: Exploitation of STRP and J\(_{2}\) perturbations for deorbitation of spacecraft through attitude control. Acta Astronaut. 203, 551–567 (2023). https://doi.org/10.1016/j.actaastro.2022.12.008

    Article  Google Scholar 

  60. McInnes, C.R.: Solar sailing. Technology, dynamics and mission applications, 1st edn. Astronomy and Planetary Sciences. Springer, London (1999)

  61. Meer van der, J.C., Cushman, R.: Orbiting dust under radiation pressure. In: Doebner, H.,Hennig, J. (eds.) Proceedings of the XVth International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal-Zellerfeld, Germany, 1986), pp. 403–414. World Scientific, Singapore (1987)

  62. Mignard, F.: Radiation pressure and dust particle dynamics. Icarus 49(3), 347–366 (1982). https://doi.org/10.1016/0019-1035(82)90041-0

    Article  Google Scholar 

  63. Mignard, F., Henon, M.: About an unsuspected integrable problem. Celest. Mech. 33(3), 239–250 (1984). https://doi.org/10.1007/BF01230506

    Article  MathSciNet  Google Scholar 

  64. Milani, A., Nobili, A.M., Farinella, P.: Non-gravitational Perturbations and Satellite Geodesy. Adam Hilger Ltd., Bristol (1987)

    Google Scholar 

  65. Montenbruck, O., Gill, E.: Satellite Orbits. Models, Methods and Applications. Physics and Astronomy. Springer-Verlag, Berlin, Heidelberg (2001)

  66. Musen, P.: The influence of the solar radiation pressure on the motion of an artificial satellite. J. Geophys. Res. 65, 1391–1396 (1960). https://doi.org/10.1029/JZ065i005p01391

    Article  Google Scholar 

  67. Musen, P., Bryant, R., Bailie, A.: Perturbations in perigee height of vanguard I. Science 131, 935–936 (1960). https://doi.org/10.1126/science.131.3404.935

    Article  Google Scholar 

  68. Nayfeh, A.H.: Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    Google Scholar 

  69. Palacián, J.F., Vanegas, J., Yanguas, P.: Compact normalisations in the elliptic restricted three body problem. Astrophys. Space Sci. 362, 215 (2017). https://doi.org/10.1007/s10509-017-3195-8

    Article  MathSciNet  Google Scholar 

  70. Parkinson, R.W., Jones, H.M., Shapiro, I.I.: Effects of solar radiation pressure on earth satellite orbits. Science 131(3404), 920–921 (1960). https://doi.org/10.1126/science.131.3404.920

    Article  Google Scholar 

  71. Peale, S.J.: Dust belt of the Earth. J. Geophys. Res. 71(3), 911–933 (1966). https://doi.org/10.1029/JZ071i003p00911

    Article  Google Scholar 

  72. Plummer, H.C.: On the possible effects of radiation on the motion of comets, with special reference to Encke’s Comet. Mon. Not. R. Astron. Soc. 65, 229–238 (1905). https://doi.org/10.1093/mnras/65.3.229

    Article  Google Scholar 

  73. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome 2. Gauthier-Villars et fils (Paris) (1893). http://hdl.handle.net/1908/3852

  74. Pokorný, P., Deutsch, A.N., Kuchner, M.J.: Mercury’s circumsolar dust ring as an imprint of a recent impact. Planet. Sci. J. 4(2), 33 (2023). https://doi.org/10.3847/PSJ/acb52e

  75. Robertson, H.P.: Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423–437 (1937). https://doi.org/10.1093/mnras/97.6.423

    Article  Google Scholar 

  76. San-Juan, J.F., López, R., Lara, M.: Vectorial formulation for the propagation of average dynamics under gravitational effects. Acta Astronaut. 217, 181–187 (2024). https://doi.org/10.1016/j.actaastro.2024.01.018

    Article  Google Scholar 

  77. Shapiro, I.I., Jones, H.M.: Perturbations of the orbit of the echo balloon. Science 132, 1484–1486 (1960). https://doi.org/10.1126/science.132.3438.1484

    Article  Google Scholar 

  78. Walter, H.G.: Conversion of osculating orbital elements into mean elements. Astron. J. 72, 994–997 (1967). https://doi.org/10.1086/110374

    Article  Google Scholar 

  79. Zadunaisky, P.E., Shapiro, I.I., Jones, H.M.: Experimental and theoretical results on the orbit of Echo 1. SAO Spec. Rep. 61 (1961)

Download references

Acknowledgements

The authors acknowledge Khalifa University of Science and Technology’s internal grant CIRA-2021-65 (8474000413). ML also acknowledges partial support from the Spanish State Research Agency and the European Regional Development Fund (Projects PID2020-112576GB-C22 and PID2021-123219OB-I00, AEI/ERDF, EU). EF has been partially supported by Spanish MINECO’s funds PID2020-112576GB-C21 and PID2021-1239 68NB-I00. RF received support from MINECO “Severo Ochoa Programme for Centres of Excellence in R &D” (CEX2018-000797-S).

Funding

The financial support for the execution of the research here presented was provided by the following grants: Khalifa University of Science and Technology’s CIRA-2021-65 / 8474000413 (recipient: E. Fantino), Spanish National funds PID2020-112576GB-C22 (recipient: M. Lara), PID2021-123219OB-I00 (recipient: M. Lara), PID2020-112576GB-C21 (recipient: E. Fantino), PID2021-123968NB-I00 (recipient: E. Fantino) and CEX2018-000797-S (recipient: R. Flores).

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were performed by M. Lara who wrote the first draft of the manuscript. All authors collaborated on improving subsequent versions of the paper, and read and approved the final manuscript.

Corresponding author

Correspondence to Elena Fantino.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this research was presented at the Third International Nonlinear Dynamics Conference— NODYCON 2023 held in Rome, Italy, 18–22 June 2023 [52].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, M., Fantino, E. & Flores, R. Orbital perturbation coupling of primary oblateness and solar radiation pressure. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09757-8

Keywords

Navigation