Log in

Utilizing symmetry-enhanced physics-informed neural network to obtain the solution beyond sampling domain for partial differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Physics-informed neural network (PINN) provides an effective way to learn numerical solutions of partial differential equations (PDEs) in the sampling domain, but usually shows poor performances beyond the domain from which the training points are sampled, i.e., the limited solution extrapolation ability. In this paper, we propose a symmetry-enhanced physics-informed neural network (sePINN) to improve the extrapolation ability which incorporates the symmetry properties of PDEs into PINN. Specifically, we first explore the discrete and continuous symmetry groups of the PDEs under study, and then leverage them to further constrain the loss function of PINN to enhance the solution extrapolation ability. Numerical results of the sePINN method with different numbers of collocation points and neurons per layer for the modified Korteweg-de Vries equation show that both the accuracies of solutions in and beyond the sampling domain are improved concurrently by the proposed sePINN method. In particular, the accuracies of extrapolated solutions take a tendency of flat fluctuations with, even superior to, the ones of solutions directly trained via the PINN method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Article  Google Scholar 

  2. Han, J., Jentzen, A., Epriya, W.N.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Engrg. 393, 114823 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, J., Chen, J., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn. 107, 781–792 (2022)

    Article  Google Scholar 

  6. Lin, S., Chen, Y.: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J. Comput. Phys. 457, 111053 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, Z.Y., Zhang, H., Zhang, L.S., Guo, L.L.: Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse problems of partial differential equations. J. Comput. Phys. 492, 112415 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Z.Y., Zhang, H., Liu, Y., Li, J.Y.: Generalized conditional symmetry enhanced physics-informed neural networks and application to the forward and inverse problems of nonlinear diffusion equations. Chaos Soliton. Fract. 168, 113169 (2023)

    Article  MathSciNet  Google Scholar 

  9. Zhang, H., Cai, S.J., Li, J.Y., Liu, Y., Zhang, Z.Y.: Enforcing generalized conditional symmetry in physics-informed neural network for solving the KdV-like equation with Robin initial/boundary conditions. Nonlinear Dyn. 111, 10381–10392 (2023)

    Article  Google Scholar 

  10. Zhu, W., Khademi, W., Charalampidis, E.G., Kevrekidis, P.G.: Neural networks enforcing physical symmetries in nonlinear dynamical lattices: the case example of the Ablowitz–Ladik model. Phys. D 434, 133264 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jagtap, A.D., Karniadakis, G.E.: Extended Physics-informed Neural Networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28(5), 2002–2041 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Article  Google Scholar 

  13. Bai, Y., Chaolu, T., Bilige, S.: The application of improved physics-informed neural network (IPINN) method in finance. Nonlinear Dyn. 107, 3655–3667 (2022)

    Article  Google Scholar 

  14. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: parareal physics-informed neural network for time-dependent PDEs. Comput. Methods Appl. Mech. Engrg. 370, 113250 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yuan, L., Ni, Y.Q., Deng, X.Y., Hao, S.: A-PINN: auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. J. Comput. Phys. 462, 111260 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonfanti, A., Santana, R., Ellero, M., Gholami, B.: On the Hyperparameters influencing a PINN’s generalization beyond the training domain. (2023) ar**v:2302.07557

  18. Zhu, M., Zhang, H., Jiao, A., Karniadakis, G.E., Lu, L.: Reliable extrapolation of deep neural operators informed by physics or sparse observations. Comput. Methods Appl. Mech. Engrg. 412, 116064 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michałowska, K., Goswami, S., Karniadakis, G.E., Riemer-Sørensen, S.: Neural operator learning for long-time integration in dynamical systems with recurrent neural networks. (2023) ar**v:2303.02243

  20. Zhang, Q., Kahana, A., Karniadakis, G.E., Stinis, P.: SMS: Spiking marching scheme for efficient long time integration of differential equations. (2022) ar**v:2211.09928

  21. Wang, S., Perdikaris, P.: Long-time integration of parametric evolution equations with physics-informed deeponets. J. Comput. Phys. 475, 111855 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, J., Lee, K., Lee, D., Jhin, S.Y., Park, N.: DPM: a novel training method for physics-informed neural networks in extrapolation. AAAI 35(9), 8146–8154 (2021)

    Article  Google Scholar 

  23. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  24. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  25. Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system. Phys. Scr. 96(12), 125202 (2021)

    Article  Google Scholar 

  26. Rani, S., Kumar, S., Mann, N.: On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Opt. Quant. Electron. 55(8), 731 (2023)

    Article  Google Scholar 

  27. Zhang, R., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  29. Mallat, S.: Understanding deep convolutional networks. Philos. Trans. R. Soc. 374, 20150203 (2016)

    Article  Google Scholar 

  30. Kondor, R., Son, H.T., Pan, H., Anderson, B., Trivedi, S.: Covariant compositional networks for learning graphs. (2018) ar**v:1801.02144

  31. Zhang, Z.Y., Cai, S.J., Zhang, H.: A symmetry group based supervised learning method for solving partial differential equations. Comput. Methods Appl. Mech. Eng. 414, 116181 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(153), 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Johannes, K.D., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miura, R.M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9(8), 1202–1204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gaeta, G., Rodríguez, M.A.: Determining discrete symmetries of differential equations. Nuovo Cimento B. 111, 879–891 (1996)

    Article  Google Scholar 

  38. Hydon, P.E.: How to construct the discrete symmetries of partial differential equations. Euro. J. Appl. Math. 11(5), 515–527 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

  40. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Soliton. Fract. 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The paper is supported by the Bei**g Natural Science Foundation (No. 1222014), the National Natural Science Foundation of China (No. 11671014) and the Cross Research Project for Minzu University of China (No. 2021JCXK04); R &D Program of Bei**g Municipal Education Commission (Nos. KM202110009006 and KM201910009001).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yong Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Moreover, the data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JY., Zhang, H., Liu, Y. et al. Utilizing symmetry-enhanced physics-informed neural network to obtain the solution beyond sampling domain for partial differential equations. Nonlinear Dyn 111, 21861–21876 (2023). https://doi.org/10.1007/s11071-023-08975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08975-w

Keywords

Navigation