Log in

On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper analyzes the coupled nonlinear (2+1)-dimensional complex modified Korteweg-de-Vries (cmKdV) equation, which appears in the fields of applied magnetism and nanophysics. By taking advantage of two mathematical integration approaches, namely, the modified generalized exponential rational function method and the extended \(\tanh \) function method, a variety of exact optical soliton solutions are obtained for the governing cmKdV equation. These acquired soliton solutions are determined in terms of hyperbolic, exponential, and trigonometric function types. By choosing suitable values of parameters, some 3D, 2D, and contour plots are portrayed with the aid of symbolic computation in Mathematica to visualize the underlying dynamics of the generated solutions. These solutions include doubly soliton, multi-soliton, singular periodic soliton, anti-bell-shaped soliton, and hyperbolic structures. Moreover, the modulation instability of the governing equation is also investigated by using the linear stability analysis. The results presented in this paper are novel and are reported for the first time in the literature. Again, modulation instability analysis was carried out on the governing model for the first time. Thus, the results obtained demonstrate that the two new mathematical schemes are quite concise and effective and can be useful in understanding the dynamical behaviors of many other nonlinear physical models appearing in nonlinear optics, nanophysics, and so many other areas of nonlinear sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

The data that supports the findings of the study are available in the article.

References

  • Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, San Diego (2007)

    MATH  Google Scholar 

  • Akinyemi, L., Morazara, E.: Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev-Petviashvili equation. Nonlinear Dyn. 111, 4683–4707 (2023). https://doi.org/10.1007/s11071-022-08087-x.G

    Article  Google Scholar 

  • Ali, K.K., Yokus, A., Seadawy, A.R., Yilmazer, R.: The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function. Chaos, Solitons Fractals 161, 112381 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Belousov, N.: äcklund transformation for the nonlinear Schródinger equation. J. Math. Sci. 264, 203–214 (2022). https://doi.org/10.1007/s10958-022-05992-9

    Article  MathSciNet  MATH  Google Scholar 

  • Ding, C.C., Zhou, Q., Triki, H., Hu, Z.H.: Interaction dynamics of optical dark bound solitons for a defocusing Lakshmanan-Porsezian-Daniel equation. Opt. Express 30, 40712–40727 (2022). https://doi.org/10.1364/OE.473024

    Article  ADS  Google Scholar 

  • Durur, H., Yokus, A., Duran, S.: Investigation of exact soliton solutions of nematicons in liquid crystals according to nonlinearity conditions. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979224500541

    Article  Google Scholar 

  • El-Ganaini, S., Kumar, S.: Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schródinger equations using the new improved modified generalized sub-ODE proposed method. Math. Comput. Simul. 208, 28–56 (2023)

    Article  Google Scholar 

  • Fan, E.: Extended \(\tanh \)-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schródinger’s equation for Davydov solitons. J. Electromagn. Waves Appl. 32(7), 858–873 (2018)

    Article  ADS  Google Scholar 

  • Isah, M.A., Yokus, A.: The investigation of several soliton solutions to the complex Ginzburg-Landau model with Kerr law nonlinearity. Mathemat. Model. Numer. Simul. Appl. 2(3), 147–163 (2022)

    Google Scholar 

  • Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos, Solitons Fractals 169, 113232 (2023). https://doi.org/10.1016/j.chaos.2023.113232

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(09), 12350083 (2023). https://doi.org/10.1142/S0217979223500832

    Article  ADS  Google Scholar 

  • Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos, Solitons Fractals 167, 113098 (2023). https://doi.org/10.1016/j.chaos.2022.113098

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Res. Phys. 44, 106193 (2023). https://doi.org/10.1016/j.rinp.2022.106193

    Article  Google Scholar 

  • Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model; computational simulations. Int. J. Mod. Phys. B 37(08), 2350071 (2023). https://doi.org/10.1142/S0217979223500716

    Article  ADS  Google Scholar 

  • Khater, M.M.A.: Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int. J. Mod. Phys. B 37(06), 2350052 (2023). https://doi.org/10.1142/S0217979223500522

    Article  ADS  Google Scholar 

  • Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium. Res. Phys. 46, 106312 (2023). https://doi.org/10.1016/j.rinp.2023.106312

    Article  Google Scholar 

  • Kumar, S., Dhiman, S.K., Chauhan, A.: Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer-Kaup-Kupershmidt (BKK) equations. Math. Comput. Simul. 196, 319–335 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, S., Niwas, M.: New optical soliton solutions of Biswas-Arshed equation using the generalised exponential rational function approach and Kudryashov’s simplest equation approach. Pramana - J Phys 96, 204 (2022)

    Article  ADS  Google Scholar 

  • Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system. Physica Scipta 96, 125202 (2021)

    Article  ADS  Google Scholar 

  • Kumar, S., Rani, S.: Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq-Burgers system in ocean waves. Phys. Fluids 34, 037109 (2022). https://doi.org/10.1063/5.0085927

    Article  ADS  Google Scholar 

  • Kumar, S., Rani, S.: Study of exact analytical solutions and various wave profiles of a new extended (2+1)-dimensional Boussinesq equation using symmetry analysis. J. Ocean Eng. Sci. 7(5), 475–484 (2022)

    Article  Google Scholar 

  • Kumar, S., Rani, S., Mann, N.: Diverse analytical wave solutions and dynamical behaviors of the new (2 + 1)-dimensional Sakovich equation emerging in fluid dynamics. European Phys. J. Plus 137, 1226 (2022)

    Article  ADS  Google Scholar 

  • Myrzakulov, R., Mamyrbekova, G., Nugmanova, G., Lakshmanan, M.: Integrable (2+1)-dimensional spin models with self-consistent potentials. Symmetry 7(3), 1352–1375 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ntiamoah, D., Ofori-Atta, W., Akinyemi, L.: The higher-order modified Korteweg-de Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.042

    Article  Google Scholar 

  • Ouahid, L., Abdou, M.A., Kumar, S., Owyed, S., Saha Ray, S.: A plentiful supply of soliton solutions for DNA PeyrardBishop equation by means of a new auxiliary equation strategy. Int. J. Modern Phys. B 35 26, 2150265 (2021)

    Article  MATH  Google Scholar 

  • Rezazadeh, H., Korkmaz, A., Eslami, M., Mirhosseini-Alizamini, S.M.: A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51, 84 (2019). https://doi.org/10.1007/s11082-019-1801-4

    Article  Google Scholar 

  • Saha, M., Sarma, A.K.: Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2420–2425 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shehata, Maha, S.M.: Extended Jacobian Elliptic Function Expansion Method and its Applications for Solving some Nonlinear Evolution Equations in Mathematical Physics. Int. J. Comput. Appl. 109 (12), 0975–8887 (2015)

  • Yesmakhanova, K., Shaikhova, G., Bekova, G., Myrzakulov, R.: Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg-de Vries equations. IOP Conf. Series: J. Phys. Conf. Ser. 936, 012045 (2017)

  • Yokus, A., Durur, H., Duran, S.: Simulation and refraction event of complex hyperbolic type solitary wave in plasma and optical fiber for the perturbed Chen-Lee-Liu equation. Opt. Quant. Electron. 53, 402 (2021). https://doi.org/10.1007/s11082-021-03036-1

    Article  Google Scholar 

  • Yokus, A., Isah, M.A.: Stability analysis and solutions of (2 + 1)-Kadomtsev-Petviashvili equation by homoclinic technique based on Hirota bilinear form. Nonlinear Dyn. 109, 3029–3040 (2022)

    Article  Google Scholar 

  • Yokus, A., Isah, M.A.: Investigation of internal dynamics of soliton with the help of traveling wave soliton solution of Hamilton amplitude equation. Opt. Quant. Electron. 54, 528 (2022). https://doi.org/10.1007/s11082-022-03944-w

    Article  Google Scholar 

  • Yokus, A., Iskenderoglu, G., Kaya, D.: Application of some nonclassical methods for p-defocusing complex Klein-Gordon equation. Opt. Quant. Electron. 55, 403 (2023). https://doi.org/10.1007/s11082-023-04649-4

    Article  Google Scholar 

  • Yuan, F.: The order-n breather and degenerate breather solutions of the (2+1)-dimensional cmKdV equations. Int. J. Mod. Phys. B 35(04), 2150053 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yuan, F.: Rational solutions of the (2+1)-dimensional cmKdV equations. Modern Phys. Lett. B 35(32), 2150489 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Yuan, F., Ghanbari, B.: Positon and hybrid solutions for the (2+1)-dimensional cmKdV equations. Chinese Phys. B. (2022). https://doi.org/10.1088/1674-1056/ac935b

    Article  Google Scholar 

  • Yuan, F., Zhu, X.M., Wang, Y.L.: Deformed solitons of a typical set of (2+1)-dimensional complex modified Korteweg-de Vries equations. Int. J. Appl. Math. Comput. Sci. 30(2), 337–350 (2020)

    MathSciNet  MATH  Google Scholar 

  • Yuan, F., Jiang, Y.: Periodic solutions of the (2+1)-dimensional complex modified Korteweg-de Vries equation Modern Phys Lett. B 34 (18), 2050202 (2020)

  • Zhang, S.: Application of Exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer-Kaup-Kupershmidt equations. Phys. Lett. A 372(11), 1873–1880 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, S., **a, T.: A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations. Appl. Math. Comput. 183(2), 1190–1200 (2006)

    MathSciNet  MATH  Google Scholar 

  • Zhu, X.M.: A coupled (2+1)-dimensional mKdV system and its nonlocal reductions. Commun Nonlinear Sci Numer. Simulat. 91, 105438 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the referees for their valuable, supportive, and helpful comments. Sachin Kumar, the author, would also like to thank the Science and Engineering Research Board SERB-DST, India for financial support provided through the MATRICS Scheme (MTR/2020/000531).

Author information

Authors and Affiliations

Authors

Contributions

Each author made an equal contribution to the manuscript’s final form. All authors would have reviewed and given their approval to the final manuscript.

Corresponding authors

Correspondence to Setu Rani or Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Kumar, S. & Mann, N. On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2+1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Opt Quant Electron 55, 731 (2023). https://doi.org/10.1007/s11082-023-04946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04946-y

Keywords

Navigation