Log in

Simplifying synthesis of the expanding glioblastoma literature: a topic modeling approach

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Our study aims to discover the leading topics within glioblastoma (GB) research, and to examine if these topics have “hot” or “cold” trends. Additionally, we aim to showcase the potential of natural language processing (NLP) in facilitating research syntheses, offering an efficient strategy to dissect the landscape of academic literature in the realm of GB research.

Methods

The Scopus database was queried using “glioblastoma” as the search term, in the “TITLE” and “KEY” fields. BERTopic, an NLP-based topic modeling (TM) method, was used for probabilistic TM. We specified a minimum topic size of 300 documents and 5% probability cutoff for outlier detection. We labeled topics based on keywords and representative documents and visualized them with word clouds. Linear regression models were utilized to identify “hot” and “cold” topic trends per decade.

Results

Our TM analysis categorized 43,329 articles into 15 distinct topics. The most common topics were Genomics, Survival, Drug Delivery, and Imaging, while the least common topics were Surgical Resection, MGMT Methylation, and Exosomes. The hottest topics over the 2020s were Viruses and Oncolytic Therapy, Anticancer Compounds, and Exosomes, while the cold topics were Surgical Resection, Angiogenesis, and Tumor Metabolism.

Conclusion

Our NLP methodology provided an extensive analysis of GB literature, revealing valuable insights about historical and contemporary patterns difficult to discern with traditional techniques. The outcomes offer guidance for research directions, policy, and identifying emerging trends. Our approach could be applied across research disciplines to summarize and examine scholarly literature, guiding future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ostrom QT, Price M, Neff C et al (2022) CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2015–2019. Neurooncology 24:v1–v95. https://doi.org/10.1093/neuonc/noac202

    Article  CAS  Google Scholar 

  2. Thakkar JP, Dolecek TA, Horbinski C et al (2014) Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 23:1985–1996. https://doi.org/10.1158/1055-9965.EPI-14-0275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nieder C, Astner ST, Grosu AL (2012) Glioblastoma research 2006–2010: pattern of citation and systematic review of highly cited articles. Clin Neurol Neurosurg 114:1207–1210. https://doi.org/10.1016/j.clineuro.2012.03.049

    Article  PubMed  Google Scholar 

  4. Akmal M, Hasnain N, Rehan A et al (2020) Glioblastome Multiforme: a bibliometric analysis. World Neurosurg 136:270–282. https://doi.org/10.1016/j.wneu.2020.01.027

    Article  PubMed  Google Scholar 

  5. Borah R, Brown AW, Capers PL, Kaiser KA (2017) Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open 7:e012545. https://doi.org/10.1136/bmjopen-2016-012545

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pham MT, Rajić A, Greig JD et al (2014) A sco** review of sco** reviews: advancing the approach and enhancing the consistency. Res Syn Meth 5:371–385. https://doi.org/10.1002/jrsm.1123

    Article  Google Scholar 

  7. Brscic M, Contiero B, Schianchi A, Marogna C (2021) Challenging suicide, burnout, and depression among veterinary practitioners and students: text mining and topics modelling analysis of the scientific literature. BMC Vet Res 17:294. https://doi.org/10.1186/s12917-021-03000-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Urru S, Sciannameo V, Lanera C et al (2022) A topic trend analysis on COVID-19 literature. Digit HEALTH 8:205520762211336. https://doi.org/10.1177/20552076221133696

    Article  Google Scholar 

  9. Chowdhary KR (2020) Natural Language Processing. Fundamentals of Artificial Intelligence. Springer India, New Delhi, pp 603–649

    Chapter  Google Scholar 

  10. Hirschberg J, Manning CD (2015) Advances in natural language processing. Science 349:261–266. https://doi.org/10.1126/science.aaa8685

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez GH, Tahsin T, Goodale BC et al (2016) Recent advances and emerging applications in text and Data Mining for Biomedical Discovery. Brief Bioinform 17:33–42. https://doi.org/10.1093/bib/bbv087

    Article  PubMed  Google Scholar 

  12. Blei DM (2012) Probabilistic topic models. Commun ACM 55:77–84. https://doi.org/10.1145/2133806.2133826

    Article  Google Scholar 

  13. Marshall IJ, Wallace BC (2019) Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev 8(163) s13643-019-1074–9. https://doi.org/10.1186/s13643-019-1074-9

  14. Grootendorst M (2022) BERTopic: Neural topic modeling with a class-based TF-IDF procedure. In: ar**v.org. https://arxiv.org/abs/2203.05794v1. Accessed 13 May 2023

  15. Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019 Conference of the North. Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186

  16. Deka P, Jurek-Loughrey A, Padmanabhan D (2022) Improved methods to aid unsupervised evidence-based fact checking for online health news. J Data Intell 3:474–505. https://doi.org/10.26421/JDI3.4-5

    Article  Google Scholar 

  17. Bird S, Klein E, Loper E (2009) Natural language processing with Python: analyzing text with the natural language toolkit

  18. Bittermann A, Fischer A (2018) How to identify hot topics in psychology using topic modeling. Z Psychol 226:3–13. https://doi.org/10.1027/2151-2604/a000318

    Article  Google Scholar 

  19. Watanabe G, Conching A, Nishioka S et al (2023) Themes in neuronavigation research: a machine learning topic analysis. World Neurosurgery: X 18:100182. https://doi.org/10.1016/j.wnsx.2023.100182

    Article  PubMed  Google Scholar 

  20. Sing DC, Metz LN, Dudli S (2017) Machine learning-based classification of 38 years of spine-related literature into 100 Research Topics. Spine (Phila Pa 1976) 42:863–870. https://doi.org/10.1097/BRS.0000000000002079

    Article  PubMed  Google Scholar 

  21. Fan G, Li Y, Yang S et al (2023) Research topics and hotspot trends of lumbar spondylolisthesis: a text-mining study with machine learning. Front Surg 9:1037978. https://doi.org/10.3389/fsurg.2022.1037978

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet Allocation. J Mach Learn Res 3:993–1022

    Google Scholar 

  23. Jain S, Wallace BC (2019) Attention is not Explanation. https://doi.org/10.48550/ARXIV.1902.10186

  24. Gilpin LH, Bau D, Yuan BZ et al (2018) Explaining Explanations: An Overview of Interpretability of Machine Learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, Turin, Italy, pp 80–89

  25. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RGW et al (2015) Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  Google Scholar 

  26. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  27. Parsons DW, Jones S, Zhang X et al (2008) An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 321:1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steponaitis G, Tamasauskas A (2021) Mesenchymal and proneural subtypes of Glioblastoma disclose branching based on GSC Associated Signature. IJMS 22:4964. https://doi.org/10.3390/ijms22094964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crespo I, Vital AL, Gonzalez-Tablas M et al (2015) Molecular and genomic alterations in Glioblastoma Multiforme. Am J Pathol 185:1820–1833. https://doi.org/10.1016/j.ajpath.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  30. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Francis JM, Zhang C-Z, Maire CL et al (2014) EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov 4:956–971. https://doi.org/10.1158/2159-8290.CD-13-0879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  33. Chandler KL, Prados MD, Malec M, Wilson CB (1993) Long-term survival in patients with glioblastoma multiforme. Neurosurgery 32:716–720 discussion 720. https://doi.org/10.1227/00006123-199305000-00003

    Article  CAS  PubMed  Google Scholar 

  34. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  35. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  36. Stupp R, Tonn J-C, Brada M, Pentheroudakis G (2010) High-grade malignant glioma: ESMO Clinical Practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21:v190–v193. https://doi.org/10.1093/annonc/mdq187

    Article  PubMed  Google Scholar 

  37. Anderson E, Grant R, Lewis SC, Whittle IR (2008) Randomized Phase III controlled trials of therapy in malignant glioma: where are we after 40 years? Br J Neurosurg 22:339–349. https://doi.org/10.1080/02688690701885603

    Article  CAS  PubMed  Google Scholar 

  38. Adeberg S, Bostel T, König L et al (2014) A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol 9:95. https://doi.org/10.1186/1748-717X-9-95

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arvanitis CD, Ferraro GB, Jain RK (2020) The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 20:26–41. https://doi.org/10.1038/s41568-019-0205-x

    Article  CAS  PubMed  Google Scholar 

  40. Sarkaria JN, Hu LS, Parney IF et al (2018) Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 20:184–191. https://doi.org/10.1093/neuonc/nox175

    Article  CAS  PubMed  Google Scholar 

  41. Heffron TP (2018) Challenges of develo** small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro Oncol 20:307–312. https://doi.org/10.1093/neuonc/nox179

    Article  CAS  PubMed  Google Scholar 

  42. Vivanco I, Robins HI, Rohle D et al (2012) Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2:458–471. https://doi.org/10.1158/2159-8290.CD-11-0284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wen PY, Cloughesy TF, Olivero AG et al (2020) First-in-human phase I study to evaluate the brain-penetrant PI3K/mTOR inhibitor GDC-0084 in patients with Progressive or Recurrent High-Grade Glioma. Clin Cancer Res 26:1820–1828. https://doi.org/10.1158/1078-0432.CCR-19-2808

    Article  CAS  PubMed  Google Scholar 

  44. Drappatz J, Brenner A, Wong ET et al (2013) Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res 19:1567–1576. https://doi.org/10.1158/1078-0432.CCR-12-2481

    Article  CAS  PubMed  Google Scholar 

  45. Idbaih A, Canney M, Belin L et al (2019) Safety and feasibility of repeated and transient blood-brain barrier disruption by Pulsed Ultrasound in patients with recurrent glioblastoma. Clin Cancer Res 25:3793–3801. https://doi.org/10.1158/1078-0432.CCR-18-3643

    Article  CAS  PubMed  Google Scholar 

  46. Terrível M, Gromicho C, Matos AM (2020) Oncolytic viruses: what to expect from their use in cancer treatment. Microbiol Immunol 64:477–492. https://doi.org/10.1111/1348-0421.12753

    Article  CAS  PubMed  Google Scholar 

  47. Hamad A, Yusubalieva GM, Baklaushev VP et al (2023) Recent developments in Glioblastoma Therapy: oncolytic viruses and emerging future strategies. Viruses 15:547. https://doi.org/10.3390/v15020547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Germano IM, Fable J, Gultekin SH, Silvers A (2003) Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol 65:279–289. https://doi.org/10.1023/b:neon.0000003657.95085.56

    Article  PubMed  Google Scholar 

  49. Wollmann G, Ozduman K, Van Den Pol AN (2012) Oncolytic virus therapy for Glioblastoma Multiforme: concepts and candidates. Cancer J 18:69–81. https://doi.org/10.1097/PPO.0b013e31824671c9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Germano IM, Ziu M, Wen P et al (2022) Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of cytotoxic chemotherapy and other cytotoxic therapies in the management of progressive glioblastoma in adults. J Neurooncol 158:225–253. https://doi.org/10.1007/s11060-021-03900-w

    Article  PubMed  Google Scholar 

  51. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  52. Akers JC, Ramakrishnan V, Kim R et al (2013) miR-21 in the Extracellular vesicles (EVs) of Cerebrospinal Fluid (CSF): a platform for Glioblastoma Biomarker Development. PLoS ONE 8:e78115. https://doi.org/10.1371/journal.pone.0078115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saadatpour L, Fadaee E, Fadaei S et al (2016) Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 23:415–418. https://doi.org/10.1038/cgt.2016.48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MK, and KM.; Methodology, MK and KM; Software, MK; Formal Analysis, MK; Data Curation, MK; Writing– Original Draft Preparation, MK, PJ, and AJ; Writing– Review & Editing, AC, IMG, and KM; Visualization, MK; Supervision, IMG, and KM; Project Administration, MK, and KM.

Corresponding author

Correspondence to Konstantinos Margetis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Authorship contribution

Conceptualization, MK, and KM.; Methodology, MK and KM; Software, MK; Formal Analysis, MK; Data Curation, MK; Writing– Original Draft Preparation, MK, PJ, and AJ; Writing– Review & Editing, AC, IMG, and KM; Visualization, MK; Supervision, IMG, and KM; Project Administration, MK, and KM.

Ethics approval

This study did not require Institutional Review Board approval as it involved analyzing publicly available academic literature without human participants or personal data.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabacak, M., Jagtiani, P., Carrasquilla, A. et al. Simplifying synthesis of the expanding glioblastoma literature: a topic modeling approach. J Neurooncol (2024). https://doi.org/10.1007/s11060-024-04762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11060-024-04762-8

Keywords

Navigation