Log in

New consideration on the application of nano-zero-valent iron (nZVI) in groundwater remediation: refractions to existing technologies

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nano-zero-valent iron (nZVI, < 100 nm) has been used extensively in groundwater remediation over the past two decades. In this review, recent research (past 5–6 years) were discussed and evaluated. (1) nZVI could already be prepared by top-down and bottom-up methods. Liquid-phase reduction and carbothermal reduction still possessed a high proportion. Ball milling and green synthesis were more promising pathways. Carbothermal reduction was cost-effective compared to other paths. In-situ green synthesis was expected to in-situ synthesis nZVI, providing new ideas for groundwater remediation. (2) Composites and modification could improve the applicability and lower storage requirements of nZVI to a certain extent. Recyclability was effectively enhanced and costs indirectly reduced (5 cycles test). The suitability of habitats should be considered. Natural minerals and/or its component carriers finally acted as mineral cover layer. Carbon materials and biopolymer coatings eventually served as microbial nutrients. They were all potential directions. (3) In-situ groundwater remediation could maximize the value of nZVI. Mobility and stability of nZVI should be further optimized. So as to completely purified argillaceous soil and aquifer matrix. Geological properties, biological population, and hydrochemical aging all influenced groundwater remediation. Batch injection could avert rebound issue (usually two injections, spaced several months apart). DC electric field–assisted obviously reduced the cost (5 times). (4) nZVI removed pollutants in aqueous matrix (purified water, surface water, groundwater) through various ways and mechanisms. Hydrodynamic and hydrochemical conditions could not change the mainstream process. Long-term fixation of heavy metals, reasonable removal of inorganic salt ions, and effective mineralization of organic substances were the most expected results. The macro-to-micro study of mechanisms was more in-need. This review will offer fresh perspectives on the use of nZVI in groundwater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li JH, Zhu JX, ** YF (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350. https://doi.org/10.1016/j.cej.2016.11.154

    Article  CAS  Google Scholar 

  2. Marcon L, Oliveras J, Puntes VF (2021) In situ nanoremediation of soils and groundwaters from the nanoparticle’s standpoint: a review. Sci Total Environ 791:148324. https://doi.org/10.1016/j.scitotenv.2021.148324

    Article  CAS  Google Scholar 

  3. Fu FL, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062

    Article  CAS  Google Scholar 

  4. Guan XH, Sun YK, Qin HJ, Li JX, Lo IMC, He D, Dong HR (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248. https://doi.org/10.1016/j.watres.2015.02.034

    Article  CAS  Google Scholar 

  5. Meng FX, Xu J, Dai HW, Yu LH, Lin DH (2022) Even incorporation of nitrogen into Fe0 nanoparticles as crystalline Fe4N for efficient and selective trichloroethylene degradation. Environ Sci Technol 56(7):4489–4497. https://doi.org/10.1021/acs.est.1c08671

    Article  CAS  Google Scholar 

  6. O'Hannesin SF, Gillham RW (1992) Permeable reaction wall for in situ degradation of halogenated organic compounds, The 45th Canadian Geotechnical Society Conference, 25–28

  7. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156. https://doi.org/10.1021/es970039c

    Article  CAS  Google Scholar 

  8. Zhao X, Liu W, Cai ZQ, Han B, Qian TW, Zhao DY (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266. https://doi.org/10.1016/j.watres.2016.05.019

    Article  CAS  Google Scholar 

  9. Ahmad S, Liu XM, Tang JC, Zhang SC (2022) Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chem Eng J 431:133187. https://doi.org/10.1016/j.cej.2021.133187

    Article  CAS  Google Scholar 

  10. Li Q, Chen ZS, Wang HH, Yang H, Wen T, Wang SQ, Hu BW, Wang XK (2021) Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci Total Environ 792:148546. https://doi.org/10.1016/j.scitotenv.2021.148546

    Article  CAS  Google Scholar 

  11. Huang XY, Wang W, Ling L, Zhang WX (2017) Heavy metal-nZVI reactions: the core-shell structure and applications for heavy metal treatment. Acta Chim Sinica 75(6):529–537. https://doi.org/10.6023/A17020051

    Article  CAS  Google Scholar 

  12. Zhang SQ, Kong Z, Wang H, Yan Q, Vayenas DV, Zhang GS (2022) Enhanced nitrate removal by biochar supported nano zero-valent iron (nZVI) at biocathode in bioelectro chemical system (BES). Chem Eng J 433:133535. https://doi.org/10.1016/j.cej.2021.133535

    Article  CAS  Google Scholar 

  13. Machado S, Pacheco JG, Nouws HPA, Albergaria JT, Delerue-Matos C (2015) Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ 553:76–81. https://doi.org/10.1016/j.scitotenv.2015.06.091

    Article  CAS  Google Scholar 

  14. Lahoz R, Natividad E, Mayoral A, Rentenberger C, Diaz-Fernandez D, Felix EJ, Soriano L, Kautek W, Bomati-Miguel O (2020) Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids. J Ind Eng Chem 81:340–351. https://doi.org/10.1016/j.jiec.2019.09.024

    Article  CAS  Google Scholar 

  15. Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL (2020) Zero-valent iron nanoparticles for soil and groundwater remediation. Int J Environ Res Public Health 17(16):5817. https://doi.org/10.3390/ijerph17165817

    Article  CAS  Google Scholar 

  16. Lin DT, Hu LM, Lo IMC (2022) Two-dimensional modeling of nano zero-valent iron transport and retention before and after phosphate adsorption. Environ Sci Technol 56(24):17712–17719. https://doi.org/10.1021/acs.est.2c05974

    Article  CAS  Google Scholar 

  17. Xu Y, Yuan CG (2022) Preparation, stabilization and applications of nano-zero-valent iron composites in water treatment. Prog Chem 34(3):717–742. https://doi.org/10.7536/PC210232

    Article  CAS  Google Scholar 

  18. Bae S, Collins RN, Waite TD, Hanna K (2018) Advances in surface passivation of nanoscale zerovalent iron: a critical review. Environ Sci Technol 52(21):12010–12025. https://doi.org/10.1021/acs.est.8b01734

    Article  CAS  Google Scholar 

  19. Mackenzie K, Bleyl S, Kopinke FD, Doose H, Bruns J (2016) Carbo-iron as improvement of the nanoiron technology: from laboratory design to the field test. Sci Total Environ 563–564:641–648. https://doi.org/10.1016/j.scitotenv.2015.07.107

    Article  CAS  Google Scholar 

  20. Garcia AN, Boparai HK, Chowdhury AIA, de Boer CV, Kocur CMD, Passeport E, Lollar BS, Austrins LM, Herrera J, O’Carroll DM (2020) Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: a field study. Water Res 174:115594. https://doi.org/10.1016/j.watres.2020.115594

    Article  CAS  Google Scholar 

  21. Qian LB, Chen Y, Ouyang D, Zhang WY, Han L, Yan JC, Kvapil P, Chen MF (2020) Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Sci Total Environ 698:134215. https://doi.org/10.1016/j.scitotenv.2019.134215

    Article  CAS  Google Scholar 

  22. Bensaida K, Maamoun I, Eljamal R, Falyouna O, Sugihara Y, Eljamal O (2021) New insight for electricity amplification in microbial fuel cells (MFCs) applying magnesium hydroxide coated iron nanoparticles. Energ Convers Manage 249:114877. https://doi.org/10.1016/j.enconman.2021.114877

    Article  CAS  Google Scholar 

  23. Maamoun I, Falyouna O, Eljamal R, Bensaida K, Tanaka K, Tosco T, Sugihara Y, Eljamal O (2022) Multi-functional magnesium hydroxide coating for iron nanoparticles towards prolonged reactivity in Cr(VI) removal from aqueous solutions. J Environ Chem Eng 10(3):107431. https://doi.org/10.1016/j.jece.2022.107431

    Article  CAS  Google Scholar 

  24. Eljamal R, Maamoun I, Bensaida K, Yilmaz G, Sugihara Y, Eljamal O (2022) A novel method to improve methane generation from waste sludge using iron nanoparticles coated with magnesium hydroxide. Renew Sust Energ Rev 158:112192. https://doi.org/10.1016/j.rser.2022.112192

    Article  CAS  Google Scholar 

  25. Falyouna O, Idham MF, Maamoun I, Bensaida K, Ashik U, Sugihara Y, Eljamal O (2022) Promotion of ciprofloxacin adsorption from contaminated solutions by oxalate modified nanoscale zerovalent iron particles. J Mol Liq 359:119323. https://doi.org/10.1016/j.molliq.2022.119323

    Article  CAS  Google Scholar 

  26. Maamoun I, Bensaida K, Eljamal R, Falyouna O, Tanaka K, Tosco T, Sugihara Y, Eljamal O (2022) Rapid and efficient chromium (VI) removal from aqueous solutions using nickel hydroxide nanoplates (nNiHs). J Mol Liq 358:119216. https://doi.org/10.1016/j.molliq.2022.119216

    Article  CAS  Google Scholar 

  27. Haye E, Chang CS, Dudek G, Hauet T, Ghanbaja J, Busby Y, Job N, Houssiau L, Pireaux JJ (2019) Tuning the magnetism of plasma-synthesized iron nitride nanoparticles: application in pervaporative membranes. ACS Appl Nano Mater 2:2484–2493. https://doi.org/10.1021/acsanm.9b00385

    Article  CAS  Google Scholar 

  28. Olea-Mejia O, Cabral-Prieto A, Salcedo-Castillo U, López-Tellez G, Olea-Cardoso O, López-Castanares R (2017) Orange peel+ nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water. Appl Surf Sci 423:170–175. https://doi.org/10.1016/j.apsusc.2017.06.173

    Article  CAS  Google Scholar 

  29. Lahoz R, Naghilou A, Kautek W, Bomati-Miguel O (2020) Study of the physicochemical surface alterations and incubation phenomena induced on iron targets by nanosecond pulsed laser ablation in liquids: effect on productivity and characteristics of the synthesized nanoscale zero-valent iron (nZVI) particles. Appl Surf Sci 511:145438. https://doi.org/10.1016/j.apsusc.2020.145438

    Article  CAS  Google Scholar 

  30. Castillo J, Vargas V, Piscitelli V, Ordoñez L, Rojas H (2017) Study of asphaltene adsorption onto raw surfaces and iron nanoparticles by AFM force spectroscopy. J Petrol Sci Eng 151:248–253. https://doi.org/10.1016/j.petrol.2017.01.019

    Article  CAS  Google Scholar 

  31. Ekeroth S, Münger EP, Boyd R, Ekspong J, Wagberg T, Edman L, Brenning N, Helmersson U (2018) Catalytic nanotruss structures realized by magnetic self-assembly in pulsed plasm. Nano Lett 18(5):3132–3137. https://doi.org/10.1021/acs.nanolett.8b00718

    Article  CAS  Google Scholar 

  32. Gong L, Qiu XJ, Tratnyek PG, Liu CS, He F (2021) FeNx(C)-coated microscale zero-valent iron for fast and stable trichloroethylene dechlorination in both acidic and basic pH conditions. Environ Sci Technol 55:5393–5402. https://doi.org/10.1021/acs.est.0c08176

    Article  CAS  Google Scholar 

  33. Ribas D, Cernik M, Martí V, Benito JA (2016) Improvements in nanoscale zero-valent iron production by milling through the addition of alumina. J Nanopart Res 18(7):181. https://doi.org/10.1007/s11051-016-3490-2

    Article  CAS  Google Scholar 

  34. Ribas D, Pešková K, Jubany I, Parma P, Černik M, Benito JA, Martí V (2019) High reactive nano zero-valent iron produced via wet milling through abrasion by alumina. Chem Eng J 366:235–245. https://doi.org/10.1016/j.cej.2019.02.090

    Article  CAS  Google Scholar 

  35. Giri AK (1997) Magnetic properties of iron-polyethylene nanocomposites prepared by high energy ball milling. J Appl Phys 81(3):1348–1350. https://doi.org/10.1063/1.363870

    Article  CAS  Google Scholar 

  36. Ambika S, Devasena M, Nambi IM (2016) Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction. J Environ Manage 181:847–855. https://doi.org/10.1016/j.jenvman.2016.06.054

    Article  CAS  Google Scholar 

  37. Kang SH, Liu SW, Wang HM, Cai WP (2016) Enhanced degradation performances of plate-like micro/nano structured zero valent iron to DDT. J Hazard Mater 307:145–153. https://doi.org/10.1016/j.jhazmat.2015.12.063

    Article  CAS  Google Scholar 

  38. Akhgar BN, Pourghahramani P (2017) Implementation of sonochemical leaching for preparation of nano zero-valent iron (NZVI) from natural pyrite mechanochemically reacted with Al. Int J Miner Process 164:1–5. https://doi.org/10.1016/j.minpro.2017.05.002

    Article  CAS  Google Scholar 

  39. Wang WH, Hu BB, Wang C, Liang ZJ, Cui FY, Zhao ZW, Yang C (2020) Cr(VI) removal by micron-scale iron-carbon composite induced by ball milling: the role of activated carbon. Chem Eng J 389:122633. https://doi.org/10.1016/j.cej.2019.122633

    Article  CAS  Google Scholar 

  40. Li L, ** HW, Luo N, Niu HY, Cai YQ, Cao D, Zhang SX (2023) Sulfurized nano zero-valent iron prepared via different methods: effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol. Ecotox Environ Safe 256:114864. https://doi.org/10.1016/j.ecoenv.2023.114864

    Article  CAS  Google Scholar 

  41. He K, Wang SC, Liu Y, Cheng D, He F (2022) Insights into the corrosion of sulfidated microscale zero valent iron in the presence of benzoic acid: inhibited oxidation capacity and promoted zinc immobilization. J Environ Chem Eng 10:108950. https://doi.org/10.1016/j.jece.2022.108950

    Article  CAS  Google Scholar 

  42. Gong L, Qiu XJ, Cheng D, Hu Y, Zhang ZZ, Yuan QS, Yang DZ, Liu CS, Liang LY, He F (2021) Co-incorporation of N and S into zero-valent iron to enhance TCE dechlorination: kinetics, electron efficiency, and dechlorination capacity. Environ Sci Technol 55:16088–16098. https://doi.org/10.1021/acs.est.1c03784

    Article  CAS  Google Scholar 

  43. He F, Yu Y, Wan WB, Liang LY (2022) Enhanced dechlorination of trichloroethene by sulfidated microscale zero-valent iron under low-frequency AC electromagnetic field. J Hazard Mater 423:127020. https://doi.org/10.1016/j.jhazmat.2021.127020

    Article  CAS  Google Scholar 

  44. Li SF, You TT, Guo Y, Yao SH, Zang SY, **ao M, Zhang ZG, Shen YM (2019) High dispersions of nano zero valent iron supported on biochar by one-step carbothermal synthesis and its application in chromate removal. RSC Adv 9:12428. https://doi.org/10.1039/c9ra00304e

    Article  CAS  Google Scholar 

  45. Zhang HM, Ruan Y, Liang AP, Shih KM, Diao ZH, Su MH, Hou LA, Chen DY, Lu H, Kong LJ (2019) Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J Clean Prod 239:117873. https://doi.org/10.1016/j.jclepro.2019.117873

    Article  CAS  Google Scholar 

  46. Bystrzejewski M (2011) Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles. J Solid State Chem 184(6):1492–1498. https://doi.org/10.1016/j.jssc.2011.04.018

    Article  CAS  Google Scholar 

  47. Dai Y, Hu YC, Jiang BJ, Zou JL, Tian GH, Fu HG (2016) Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction. J Hazard Mater 309:249–258. https://doi.org/10.1016/j.jhazmat.2015.04.013

    Article  CAS  Google Scholar 

  48. Nistico R, Carlos L (2019) High yield of nano zero-valent iron (nZVI) from carbothermal synthesis using lignin-derived substances from municipal biowaste. J Anal Appl Pyrol 140:239–244. https://doi.org/10.1016/j.jaap.2019.03.022

    Article  CAS  Google Scholar 

  49. Li QM, Liu ML, Qiu XC, Liu X, Dapaah MF, Niu QJ, Cheng L (2022) Removal of chromium(VI) by nanoscale zero-valent iron supported on melamine carbon foam. Nanomaterials 12(11):1886. https://doi.org/10.3390/nano12111866

    Article  CAS  Google Scholar 

  50. Cao CY, Chen SL, Wan X, Wang M, Song ZG, Zhao S (2022) Removal of Cr(VI) by a simply prepared biochar-supported nanoscale zero-valent iron. J Chem Technol Biot 97(10):2739–2746. https://doi.org/10.1002/jctb.7140

    Article  CAS  Google Scholar 

  51. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zero valent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632. https://doi.org/10.1016/j.cej.2015.11.046

    Article  CAS  Google Scholar 

  52. Kong YL, Li MX, Zhou YY, Pan R, Han Z, Ma JY, Chen ZL, Shen JM (2022) Carbothermal synthesis of nano-iron-carbon composites for arsenate removal from high-arsenic acid wastewater. J Environ Chem Eng 10(2):107140. https://doi.org/10.1016/j.jece.2022.107140

    Article  CAS  Google Scholar 

  53. Xu ZH, Gu H, **ong MM, Wang YH, Ma CY, Gu SY, ** Y, Meng YJ, Zhang DF, **e HJ, Chen WF (2023) Investigate the multipath erasure of nitrobenzene over nanoscale zero-valent-iron/N-doped biochar hybrid with extraordinary reduction performance. Environ Res 216(3):114724. https://doi.org/10.1016/j.envres.2022.114724

    Article  CAS  Google Scholar 

  54. Zhu KR, Chen CL, Xu MWC, Chen K, Tan XL, Wakeel M, Alharbi NS (2018) In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. Chem Eng J 331:395–405. https://doi.org/10.1016/j.cej.2017.08.126

    Article  CAS  Google Scholar 

  55. Cao B, Qu JH, Chu YY, Zhu YJ, Jiang YX, Zhang XB, Sun MZ, Jiang Z, Ma SY, Zhang Y (2023) One-step self-assembly of Fe-biochar composite for enhanced persulfate activation to phenol degradation: Different active sites-induced radical/non-radical mechanism. Chemosphere 322:138168. https://doi.org/10.1016/j.chemosphere.2023.138168

    Article  CAS  Google Scholar 

  56. Ren LM, Dong J, Chi ZF, Huang HZ (2018) Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer. J Environ Sci 73:96–106. https://doi.org/10.1016/j.jes.2018.01.018

    Article  CAS  Google Scholar 

  57. Peng BX, Zhou RS, Chen Y, Tu S, Yin YW, Ye LY (2020) Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation. Front Chem Sci Eng 14:1006–1017. https://doi.org/10.1007/s11705-020-1924-y

    Article  CAS  Google Scholar 

  58. Xu Y, Liu ZM, Ma KX, Qin QD (2022) Facile synthesis of high iron content activated carbon-supported nanoscale zero-valent iron for enhanced Cr(VI) removal in aqueous solution. Chemosphere 291(1):132709. https://doi.org/10.1016/j.chemosphere.2021.132709

    Article  CAS  Google Scholar 

  59. Ambika S, Nambi IM, Senthilnathan J (2016) Low temperature synthesis of highly stable and reusable CMC-Fe2+(-nZVI) catalyst for the elimination of organic pollutants. Chem Eng J 289:544–553. https://doi.org/10.1016/j.cej.2015.12.063

    Article  CAS  Google Scholar 

  60. Du X, Zhao TY, **u ZY, Yang ZK, **ng ZP, Li ZZ, Yang SL, Zhou W (2019) Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron super structures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photo catalysis-Fenton coupling system. J Hazard Mater 377:330–340. https://doi.org/10.1016/j.jhazmat.2019.05.061

    Article  CAS  Google Scholar 

  61. Shi DY, Zhu GF, Zhang XD, Zhang X, Li X, Fan J (2019) Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water. Nanoscale 11(3):1000–1010. https://doi.org/10.1039/c8nr08302a

    Article  CAS  Google Scholar 

  62. Lin KS, Mdlovu NV, Chen CY, Chiang CL, Dehvari K (2018) Degradation of TCE, PCE, and 1,2-DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. J Clean Prod 175:456–466. https://doi.org/10.1016/j.jclepro.2017.12.074

    Article  CAS  Google Scholar 

  63. Zhou Y, Li XF (2022) Need a balance? relationship between removal reactivity of cationic dye and bacterial cytotoxicity by iron carbide-stabilized nano zero-valent iron. Chemosphere 290:133258. https://doi.org/10.1016/j.cej.2022.139150

    Article  CAS  Google Scholar 

  64. Hussain I, Li MY, Zhang YQ, Li YC, Huang SB, Du XD, Liu GQ, Hayat W, Anwar N (2017) Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chem Eng J 311:163–172. https://doi.org/10.1016/j.cej.2016.11.085

    Article  CAS  Google Scholar 

  65. Wu JX, Wang B, Blaney L, Peng GL, Chen P, Cui YZ, Deng SB, Wang YJ, Huang J, Yu G (2019) Degradation of sulfamethazine by persulfate activated with organomontmorillonite supported nano-zero valent iron. Chem Eng J 361:99–108. https://doi.org/10.1016/j.cej.2018.12.024

    Article  CAS  Google Scholar 

  66. Wei YF, Fang ZQ, Zheng LC, Tsang EP (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhorniacrassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci 399:322–329. https://doi.org/10.1016/j.apsusc.2016.12.090

    Article  CAS  Google Scholar 

  67. Martins F, Machado S, Albergaria T, Delerue-Matos C (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhorniacrassipes and its mechanism in the hexavalent chromium removal. Int J Life Cycle Assess 22:707–714. https://doi.org/10.1016/j.apsusc.2016.12.090

    Article  CAS  Google Scholar 

  68. Mondal P, Purkait MK (2017) Green synthesized iron nanoparticle embedded pH responsive PVDF-co-HFP membranes: optimization study for NPs preparation and nitrobenzene reduction. Sep Sci Technol 52(14):2338–2355. https://doi.org/10.1080/01496395.2016.1274759

    Article  CAS  Google Scholar 

  69. Anbouhi TS, Esfidvajani EM, Nemati F, Haghighat S, Sari S, Attar F, Pakaghideh A, Sohrabi MJ, Mousavi SE, Falahati M (2019) Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. Int J Nanomed 14:243–256. https://doi.org/10.2147/IJN.S188497

    Article  CAS  Google Scholar 

  70. Wang YN, O’Connor D, Shen ZT, Lo IMC, Tsang DCW, Pehkonen S, Pu SY, Hou DY (2019) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod 226:540–549. https://doi.org/10.1016/j.jclepro.2019.04.128

    Article  CAS  Google Scholar 

  71. Fang SB, Zhang JX, Niu YF, Ju SH, Gu YW, Han K, Wan XX, Li N, Zhou Y (2023) Removal of nitrate nitrogen from wastewater by green synthetic hydrophilic activated carbon supported sulfide modified nanoscale zerovalent iron: characterization, performance and mechanism. Chem Eng J 461:141990. https://doi.org/10.1016/j.cej.2023.141990

    Article  CAS  Google Scholar 

  72. Puthukkara PAR, Jose TS, Lal SD (2021) Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. J Environ Chem Eng 9(1):104569. https://doi.org/10.1016/j.jece.2020.104569

    Article  CAS  Google Scholar 

  73. Rana A, Kumari N, Tyagi M, Jagadevan S (2018) Leaf-extract mediated zero-valent iron for oxidation of arsenic(III): preparation, characterization and kinetics. Chem Eng J 347:91–100. https://doi.org/10.1016/j.cej.2018.04.075

    Article  CAS  Google Scholar 

  74. Manquián-Cerda K, Cruces E, Rubio MA, Reyes C, Arancibia-Miranda N (2017) Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: reactivity, characterization and removal mechanism of arsenate. Ecotox Environ Safe 145:69–77. https://doi.org/10.1016/j.ecoenv.2017.07.004

    Article  CAS  Google Scholar 

  75. Dalal U, Reddy SN (2019) A novel nano zero-valent iron biomaterial for chromium (Cr6+ to Cr3+) reduction. Environ Sci Pollut R 26:10631. https://doi.org/10.1007/s11356-019-04528-0

    Article  CAS  Google Scholar 

  76. Yirsaw BD, Megharaj M, Chen ZL, Naidu R (2016) Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environ Technol Innov 5:136–147. https://doi.org/10.1016/j.eti.2016.01.005

    Article  Google Scholar 

  77. Puiatti GA, de Carvalho JP, de Matos AT, Lopes RP (2022) Green synthesis of Fe0 nanoparticles using Eucalyptus grandis leaf extract: characterization and application for dye degradation by a (Photo)Fenton-like process. J Environ Manage 311:114828. https://doi.org/10.1016/j.jenvman.2022.114828

    Article  CAS  Google Scholar 

  78. Shanableh A, Bhattacharjee S, Sadik S (2021) Evaluating iron-based nanoparticles for ciprofloxac in removal: date seed extract as a biostabilizing and a bioreducing agent. J Water Process Eng 44:102419. https://doi.org/10.1016/j.jwpe.2021.102419

    Article  Google Scholar 

  79. Ravikumar KVG, Ravikumar S, Sudakaran SV, Ravikumar VN, Mrudula P, Natarajan C, Amitava M (2018) Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. J Environ Chem Eng 6:1683–1689. https://doi.org/10.1016/j.jece.2018.02.023

    Article  CAS  Google Scholar 

  80. Kubendiran H, Alex SA, Pulimi M, Chandrasekaran N, Nancharaiah YV, Venugopalan VP, Mukherjee A (2021) Development of biogenic bimetallic Pd/Fe nanoparticle-impregnated aerobic microbial granules with potential for dye removal. J Environ Manage 293:112789. https://doi.org/10.1016/j.jenvman.2021.112789

    Article  CAS  Google Scholar 

  81. Subramaniyam V, Subashchandrabose SR, Ganeshkumar V, Thavamani P, Chen ZL, Naidu R, Megharaj M (2016) Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass. Bioresource Technol 211:698–703. https://doi.org/10.1016/j.biortech.2016.03.154

    Article  CAS  Google Scholar 

  82. Kamali M, Costa MEV, Otero-Irurueta G, Capela I (2019) Ultrasonic irradiation as a green production route for coupling crystallinity and high specific surface area in iron nanomaterials. J Clean Prod 211:185–197. https://doi.org/10.1016/j.jclepro.2018.11.127

    Article  CAS  Google Scholar 

  83. Li SQ, Yu C, Wu ZX, Cai XQ, Zha FS (2020) Effect of Kaolin particle size on the removal of Pb(II) from aqueous solutions by Kaolin-supported nanoscale zero-valent iron. Mater Res Express 7(4):045002. https://doi.org/10.1088/2053-1591/ab83a3

    Article  CAS  Google Scholar 

  84. Bagheri M, Jafari SM, Eikani MH (2021) Ultrasonic-assisted production of zero-valent iron-decorated graphene oxide/activated carbon nanocomposites: chemical transformation and structural evolution. Mat Sci Eng C-Mater 118:111362. https://doi.org/10.1016/j.msec.2020.111362

    Article  CAS  Google Scholar 

  85. Liang Z, Yan QW, Chen D (2018) Degradation of p-nitrophenol by nanoscale zero-valent iron produced by microwave-assisted ball milling. J Environ Eng 144(3):04018003. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001332

    Article  Google Scholar 

  86. Zhang YZ, Liu JF, Chen D, Qin QD, Wu YJ, Huang F, Li W (2019) Preparation of FeOOH/Cu with high catalytic activity for degradation of organic dyes. Materials 12:338. https://doi.org/10.3390/ma12030338

    Article  CAS  Google Scholar 

  87. Wang P, Fu FG, Liu TY (2022) A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: emergence, preparation, optimization and mechanism. Chemosphere 285:131435. https://doi.org/10.1016/j.chemosphere.2021.131435

    Article  CAS  Google Scholar 

  88. Gong L, Zhang ZZ, **a CY, Zheng J, Gu YW, He F (2022) A quantitative study of the effects of particle’ properties and environmental conditions on the electron efficiency of Pd and sulfidated nanoscale zero-valent irons. Sci Total Environ 853:158469. https://doi.org/10.1016/j.scitotenv.2022.158469

    Article  CAS  Google Scholar 

  89. Luo ZY, Zhu JY, Yu L, Yin K (2021) Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: inhibition and induced promotion on aging effects. Environ Pollut 287:117628. https://doi.org/10.1016/j.envpol.2021.117628

    Article  CAS  Google Scholar 

  90. Zhou LJ, Zhuang WQ, Wang X, Yu K, Yang SF, **a SQ (2017) Potential effects of loading nano zero valent iron discharged on membrane fouling in an anoxic/oxic membrane bioreactor. Water Res 111:140–146. https://doi.org/10.1016/j.watres.2017.01.007

    Article  CAS  Google Scholar 

  91. Ci ZQ, Yue YX, **ao JT, Huang XS, Sun YB (2023) Spectroscopic and modeling investigation of U(VI) removal mechanism on nanoscale zero-valent iron/clay composites. J Colloid Interf Sci 630:395–403. https://doi.org/10.1016/j.jcis.2022.10.008

    Article  CAS  Google Scholar 

  92. Chi ZX, Hao L, Dong H, Yu H, Liu HK, Wang Z, Yu HB (2020) The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem Eng J 382:122789. https://doi.org/10.1016/j.cej.2019.122789

    Article  CAS  Google Scholar 

  93. Khandelwal N, Singh N, Tiwari E, Marsac R, Schild D, Schafer T, Darbha GK (2023) Varying growth behavior of redox-sensitive nanoparticles on 1:1 and 2:1 clay surfaces: mechanistic insights on preferential toxic ions removal in mono, co, and multi-metal contaminated waters. Chem Eng J 461:141883. https://doi.org/10.1016/j.cej.2023.141883

    Article  CAS  Google Scholar 

  94. Yu HQ, Zhang T, **g ZF, Xu JC, Qiu FX, Yang DY, Yu LB (2019) In situ fabrication of dynamic nano zero-valent iron/activated carbon nanotubes membranes for tellurium separation. Chem Eng J 331:395–405. https://doi.org/10.1016/j.ces.2019.05.012

    Article  CAS  Google Scholar 

  95. Ding X, Wang SY, Shen WQ, Mu Y, Wang L, Chen H, Zhang LZ (2017) Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism. Water Res 112:9–18. https://doi.org/10.1016/j.watres.2017.01.024

    Article  CAS  Google Scholar 

  96. Lv XS, Qin XF, Wang KF, Peng YY, Wang P, Jiang GM (2019) Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: enhanced performance in Cr(VI) removal, mechanism and regeneration. J Hazard Mater 373:176–186. https://doi.org/10.1016/j.jhazmat.2019.03.091

    Article  CAS  Google Scholar 

  97. Xu QX, Liu XJ, Lai DG, **ng ZJ, Ndagijimana P, Li ZW, Wang Y (2022) One-step synthesis of nanoscale zero-valent iron modified hydrophobic mesoporous activated carbon for efficient removal of bulky organic pollutants. J Clean Prod 356:131854. https://doi.org/10.1016/j.jclepro.2022.131854

    Article  CAS  Google Scholar 

  98. Khandelwal N, Behera MP, Rajak JK, Darbha GK (2020) Biochar-nZVI nanocomposite: optimization of grain size and Fe0 loading, application and removal mechanism of anionic metal species from soft water, hard water and groundwater. Clean Technol Envir 22(5):1015–1024. https://doi.org/10.1007/s10098-020-01846-7

    Article  CAS  Google Scholar 

  99. Dong YS, Meng FJ (2020) Synthesis and photocatalytic properties of three dimensional laminated structure anatase TiO2/nano-Fe0 with exposed (001) facets. RSC Adv 10:11823–11830. https://doi.org/10.1039/d0ra01429j

    Article  CAS  Google Scholar 

  100. Joshaghani M, Yazdani D, Zinatizadeh AA (2017) Statistical modeling of p-nitrophenol degradation using a response surface methodology (RSM) over nano zero-valent iron-modified Degussa P25-TiO2/ZnO photocatalyst with persulfate. J Iran Chem Soc 14:2449–2456. https://doi.org/10.1007/s13738-017-1179-9

    Article  CAS  Google Scholar 

  101. **ong Z, Zhao DY, Pan G (2007) Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res 41(15):3497–3505. https://doi.org/10.1016/j.watres.2007.05.049

    Article  CAS  Google Scholar 

  102. Wang XY, Yang JCE, Zhu MP (2014) Effects of PMMA/anisole hybrid coatings on discoloration performance of nano zerovalent iron toward organic dyes. J Taiwan Ins Chem E 45(3):937–946. https://doi.org/10.1016/j.jtice.2013.08.019

    Article  CAS  Google Scholar 

  103. Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 42(12):4364–4370. https://doi.org/10.1021/es7028153

    Article  CAS  Google Scholar 

  104. Pourbaghaei NZ, Anbia M, Rahimi F (2023) Fabrication of nano zero valent iron/biopolymer composite with antibacterial properties for simultaneous removal of nitrate and humic acid: kinetics and isotherm studies. J Polym Environ 30(3):907–924. https://doi.org/10.1007/s10924-021-02209-z

    Article  CAS  Google Scholar 

  105. Yao YH, Huang SM, Zhou W, Liu AR, Zhao WJ, Song CY, Liu J, Zhang WX (2019) Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(II) wastewater treatment. Environ Sci Pollut R 26:806–815. https://doi.org/10.1007/s11356-018-3631-5

    Article  CAS  Google Scholar 

  106. Zhou JM, Chen HL, Thring RW, Arocena JM (2019) Chemical pretreatment of rice straw biochar: effect on biochar properties and hexavalent chromium adsorption. Int J Environ Res 13:91–105. https://doi.org/10.1007/s41742-018-0156-1

    Article  CAS  Google Scholar 

  107. **ng XW, Ren XM, Alharbi NS, Chen CL (2022) Efficient adsorption and reduction of Cr(VI) from aqueous solution by Santa Barbara Amorphous-15 (SBA-15) supported Fe/Ni bimetallic nanoparticles. J Colloid Interf Sci 629:744–754. https://doi.org/10.1016/j.jcis.2022.08.171

    Article  CAS  Google Scholar 

  108. Li JX, Zhang XY, Sun YK, Liang LP, Pan BC, Zhang WM, Guan XH (2017) Advances in sulfidation of zerovalent iron for water decontamination. Environ Sci Technol 51(23):13533–13544. https://doi.org/10.1021/acs.est.7b02695

    Article  CAS  Google Scholar 

  109. Li G, Feng ZQ, Zhao BK, He Q, Yang HY (2018) Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light. Int J Min Met Mater 25(2):244–252. https://doi.org/10.1007/s12613-018-1567-x

    Article  CAS  Google Scholar 

  110. Liang L, Li XQ, Guo YQ, Lin Z, Su XT, Liu B (2021) The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J Hazard Mater 404:124057. https://doi.org/10.1016/j.jhazmat.2020.124057

    Article  CAS  Google Scholar 

  111. Gong L, Shi SS, Lv N, Xu WQ, Ye ZW, Gao B, O’Carroll DM, He F (2020) Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media. Sci Total Environ 718(23):137427. https://doi.org/10.1016/j.scitotenv.2020.137427

    Article  CAS  Google Scholar 

  112. Wang SC, Song YD, Sun YK (2018) Enhanced dyes removal by sulfidated zerovalent iron: kinetics and influencing factors. Environ Technol Inno 11:339–347. https://doi.org/10.1016/j.eti.2018.06.014

    Article  Google Scholar 

  113. Song YC, Tang HY, Yan YJ, Guo YJ, Wang H, Bian ZY (2022) Combining electrokinetic treatment with modified zero-valent iron nanoparticles for rapid and thorough dechlorination of trichloroethene. Chemosphere 292:133443. https://doi.org/10.1016/j.chemosphere.2021.133443

    Article  CAS  Google Scholar 

  114. Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831. https://doi.org/10.1289/ehp.0900793

    Article  Google Scholar 

  115. Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Remediat J 19:99–108. https://doi.org/10.1002/rem.20194

    Article  Google Scholar 

  116. Song IG, Kang YG, Kim JH, Yoon H, Um WY, Chang YS (2023) Assessment of sulfidated nanoscale zero valent iron for in-situ remediation of cadmium-contaminated acidic groundwater at a zinc smelter. J Hazard Mater 441:129915. https://doi.org/10.1016/j.jhazmat.2022.129915

    Article  CAS  Google Scholar 

  117. Tang F, Tian F, Zhang F, Yang X, **n J, Zheng Y (2021) Remediation of trichloroethylene by microscale zero-valent iron aged under various groundwater conditions: removal mechanism and physicochemical transformation. Sci Total Environ 775:145757. https://doi.org/10.1016/j.scitotenv.2021.145757

    Article  CAS  Google Scholar 

  118. Baldermann A, Kaufhold S, Dohrmann R, Baldermann C, Letofsky-Papst I, Dietzel M (2021) A novel nZVI-bentonite nanocomposite to remove trichloroethene (TCE) from solution. Chemosphere 282:131081. https://doi.org/10.1016/j.chemosphere.2021.131018

    Article  CAS  Google Scholar 

  119. Ahn JY, Kim C, Jun SC, Hwang I (2021) Field-scale investigation of nanoscale zero-valent iron (NZVI) injection parameters for enhanced delivery of NZVI particles to groundwater. Water Res 202:117402. https://doi.org/10.1016/j.watres.2021.117402

    Article  CAS  Google Scholar 

  120. Semerad J, Sevcu A, Nguyen NHA, Hrabak P, Spanek R, Bobcíkov K, Pospískova K, Filip J, Medrík I, Kaslík J, Safarík I, Filipova A, Nosek J, Pivokonský M, Cajthaml T (2021) Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: degradation efficiency and effect on resident microorganisms. Chemosphere 281:130915. https://doi.org/10.1016/j.chemosphere.2021.130915

    Article  CAS  Google Scholar 

  121. Cerníkova M, NosekJ CM (2020) Combination of nZVI and DC for the in-situ remediation of chlorinated ethenes: an environmental and economic case study. Chemosphere 245:125576. https://doi.org/10.1016/j.chemosphere.2019.125576

    Article  CAS  Google Scholar 

  122. Czinnerova M, Voloscukova O, Markova K, SevcuA CM, Nosek J (2020) Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: a long-term field study. Water Res 175:115692. https://doi.org/10.1016/j.watres.2020.115692

    Article  CAS  Google Scholar 

  123. Ma J, **e MX, Zhao N, Wang Y, Lin QQ, Zhu YP, Chao YQ, Ni ZB, Qiu RL (2023) Enhanced trichloroethylene biodegradation: the mechanism and influencing factors of combining microorganism and carbon-iron materials. Sci Total Environ 878:162720. https://doi.org/10.1016/j.scitotenv.2023.162720

    Article  CAS  Google Scholar 

  124. Meng FX, Li ZJ, Lei C, Yang K, Lin DH (2021) Removal of trichloroethene by iron-based biochar from anaerobic water: key roles of Fe/C ratio and iron carbides. Chem Eng J 413:127391. https://doi.org/10.1016/j.cej.2020.127391

    Article  CAS  Google Scholar 

  125. Danish M, Gu XG, Lu SG, Naqvi M (2016) Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ Sci Pollut Res Int 23(13):13298–13307. https://doi.org/10.1007/s11356-016-6488-5

    Article  CAS  Google Scholar 

  126. Gu MB, Farooq U, Lu SG, Zhang X, Qiu ZF, Sui Q (2018) Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. J Hazard Mater 349:35–44. https://doi.org/10.1016/j.jhazmat.2018.01.037

    Article  CAS  Google Scholar 

  127. Yan JC, Hu LC, Gao WG, Yang L, Qian LB, Han L, Chen MF (2022) Remediation of 1,2-dichlorobenzene contaminated soil by activated persulfate using green synthesized nanoscale zero valent iron: activation mechanism and degradation pathways. J Soil Sediment 22(4):1135–1144. https://doi.org/10.1007/s11368-021-03116-5

    Article  CAS  Google Scholar 

  128. Xu ZQ, Huang JY, Fu RB, Zhou ZY, Ali M, Shan A, Yang R, Zeng GL, Zhou ZK, Idrees A, Lyu SG (2021) Enhanced trichloroethylene degradation in the presence of surfactant: pivotal role of Fe(II)/nZVI catalytic synergy in persulfate system. Sep Purif Technol 272:118885. https://doi.org/10.1016/j.seppur.2021.118885

    Article  CAS  Google Scholar 

  129. Wang P, Xu ZQ, Zeng GL, Lyu SG (2023) Efficient degradation of trichloroethene with the existence of surfactants by peroxymonosulfate activated by nano-zero-valent iron: performance and mechanism investigation. Environ Sci Pollut R. https://doi.org/10.1007/s11356-023-25725-y. (online)

    Article  Google Scholar 

  130. Huang JY, Li N, Zhou ZY, Xu ZQ, Ali M, Zeng GL, Yang RM, Zhou ZK, Danish M, Lyu SG (2022) Comparative studies on trichloroethylene degradation by Fe foam catalyzing three hydrogen peroxide-based oxidants. J Environ Chem Eng 10(2):107335. https://doi.org/10.1016/j.jece.2022.107335

    Article  CAS  Google Scholar 

  131. Danish M, Gu XG, Lu SG, Zhang X, Fu XR, Xue YF, Miao ZW, Ahmad A, Naqvi M, Qureshi AS (2016) The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process. Water Air Soil Poll 227:301. https://doi.org/10.1007/s11270-016-3005-x

    Article  CAS  Google Scholar 

  132. Zhang WY, Qian LB, Han L, Yang L, Ouyang D, Long Y, Wei ZF, Dong XZ, Liang C, Li J, Gu MY, Chen MF (2021) Synergistic roles of Fe(II) on simultaneous removal of hexavalent chromium and trichloroethylene by attapulgite-supported nanoscale zero-valent iron/persulfate system. Chem Eng J 430(2):132841. https://doi.org/10.1016/j.cej.2021.132841

    Article  CAS  Google Scholar 

  133. Zhang JH, Hao ZW, Zhang Z (2010) Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Saf Environ 88(6):439–445. https://doi.org/10.1016/j.psep.2010.06.002

    Article  CAS  Google Scholar 

  134. Abida O, Graaf FVD, Li LY (2020) Exploratory study of removing nutrients from aqueous environments employing a green synthesized nano zero-valent iron. Environ Technol 43(13):2017–2032. https://doi.org/10.1080/09593330.2020.1864480

    Article  CAS  Google Scholar 

  135. Gibert O, Abenza M, Reig M, Vecino X, Sanchez D, Arnaldos M, Cortina JL (2022) Removal of nitrate from groundwater by nano-scale zero-valent iron injection pulses in continuous-flow packed soil columns. Sci Total Environ 810:152300. https://doi.org/10.1016/j.scitotenv.2021.152300

    Article  CAS  Google Scholar 

  136. Zhou ZY, Zhang C, ** MN, Ma HN, Jia HZ (2023) Multi-scale modeling of natural organic matter-heavy metal cations interactions: aggregation and stabilization mechanisms. Water Res 238:120007. https://doi.org/10.1016/j.watres.2023.120007

    Article  CAS  Google Scholar 

  137. Liang WY, Wang GH, Peng C, Tan JQ, Wan J, Sun PF, Li QN, Ji XW, Zhang Q, Wu YH, Zhang W (2022) Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: a critical review. 426:127993. https://doi.org/10.1016/j.jhazmat.2021.127993

  138. Wei XP, Guo ZY, Yin H, Yuan YB, Chen RX, Lu GN, Dang Z (2021) Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zerovalent iron: compound effects and removal mechanism. J Hazard Mater 414(19):125555. https://doi.org/10.1016/j.jhazmat.2021.125555

    Article  CAS  Google Scholar 

  139. Wei XP, Hua Y, Peng H, Guo ZY, Lu GN, Dang Z (2020) Sulfidation enhanced reduction of polybrominated diphenyl ether and Pb(II) combined pollutants by nanoscale zerovalent iron: competitive reaction between pollutants and electronic transmission mechanism. Chem Eng J 395:125085. https://doi.org/10.1016/j.cej.2020.125085

    Article  CAS  Google Scholar 

  140. Liu XS, Xu HM, Wang LL, Qu Z, Yan NQ (2020) Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. Chem Eng J 381:122559. https://doi.org/10.1016/j.cej.2019.122559

    Article  CAS  Google Scholar 

  141. Liu TY, Yang YL, Wang ZL, Sun YQ (2016) Remediation of arsenic(III) from aqueous solutions using improved nanoscale zero-valent iron on pumice. Chem Eng J 288:739–744. https://doi.org/10.1016/j.cej.2015.12.070

    Article  CAS  Google Scholar 

  142. Wang J, Yin ML, Liu J, Shen CC, Yu TL, Li HC, Zhong QH, Sheng GD, Lin K, Jiang XY, Dong HL, Liu SY, **ao TF (2021) Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments. J Hazard Mater 414:125466. https://doi.org/10.1016/j.jhazmat.2021.125466

    Article  CAS  Google Scholar 

  143. Tang H, Zhang S, Pang HW, Wang JQ, Wang XX, Song G, Yu SJ (2021) Insights into enhanced removal of U(VI) by melamine sponge supported sulfurized nanoscale zero-valent iron. J Clean Prod 329:129662. https://doi.org/10.1016/j.jclepro.2021.129662

    Article  CAS  Google Scholar 

  144. Hua YL, Li DH, Zou JL, Wang W, Wu XY, Zhang XW, Liu Q, Zhao GD, Li M, Zhang WX, Yang JP (2023) Evolutional solid phase and solid-liquid interface uranium immobilization mechanisms by nanoscale zero-valent iron and enhanced uranium stability control strategy. ChemEngJ 453:139924. https://doi.org/10.1016/j.cej.2022.139924

    Article  CAS  Google Scholar 

  145. Yan WL, Herzing AA, Li XQ, Kiely CJ, Zhang WX (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44(11):4288–4294. https://doi.org/10.1021/es100051q

    Article  CAS  Google Scholar 

  146. Boglaienko D, Emerson HP, Katsenovich YP, Levitskai TG (2019) Comparative analysis of ZVI materials for reductive separation of 99Tc(VII) from aqueous waste streams. J Hazard Mater 380:120386. https://doi.org/10.1016/j.jhazmat.2019.120836

    Article  CAS  Google Scholar 

  147. Lieser KH (1993) Technetium in the nuclear fuel cycle, in medicine and in the environment. Radiochim Acta 63:5–8

    Article  CAS  Google Scholar 

  148. Ishag A, Li Y, Zhang N, Wang HH, Guo H, Mei P, Sun YB (2020) Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: a review. Environ Res 188:109855. https://doi.org/10.1016/j.envres.2020.109855

    Article  CAS  Google Scholar 

  149. Tsarev S, Collins RN, Fahy A, Waite TD (2016) Reduced uranium phases produced from anaerobic reaction with nanoscale zerovalent iron. Environ Sci Technol 50(5):2595–2601. https://doi.org/10.1021/acs.est.5b06160

    Article  CAS  Google Scholar 

  150. Sihn Y, Bae S, Lee W (2019) Immobilization of uranium(VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI). Chemosphere 215:626–633. https://doi.org/10.1016/j.chemosphere.2018.10.073

    Article  CAS  Google Scholar 

  151. Crane RA, Dickinson M, Popescu IC, Scoot TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942. https://doi.org/10.1016/j.jhazmat.2010.01.060

    Article  CAS  Google Scholar 

  152. Fan D, Anitori RP, Tebo BM, Tratnyek PG, Pacheco JSL, Kukkadapu RK, Engelhard MH, Bowden ME, Kovarik L, Arey BW (2013) Reductive sequestration of pertechnetate (99TcO4-) by nano zerovalent iron (nZVI) transformed by abiotic sulfide. Environ Sci Technol 47(10):5302–5310. https://doi.org/10.1021/es304829z

    Article  CAS  Google Scholar 

  153. Fan DM, Anitori RP, Tebo BM (2014) Oxidative remobitization of technetium sequestered by sulfide-transformed nano zerovalent iron. Environ Sci Technol 48(13):7409–7417. https://doi.org/10.1021/es501607s

    Article  CAS  Google Scholar 

  154. Falyouna O, Bensaida K, Maamoun I, Ashik UPM, Tahara A, Tanaka K, Aoyagi N, Sugihara Y, Eljamal O (2022) Synthesis of hybrid magnesium hydroxide/magnesium oxide nanorods [Mg(OH)2/MgO] for prompt and efficient adsorption of ciprofloxacin from aqueous solutions. J Clean Prod 342:130949. https://doi.org/10.1016/j.jclepro.2022.130949

    Article  CAS  Google Scholar 

  155. Idham MF, Falyouna O, Eljamal O (2021) Effect of graphene oxide synthesis method on the adsorption performance of pharmaceutical contaminants. Proc Int Exchange Innov Conf Eng Sci (IEICES) 7:232–239. https://doi.org/10.5109/4738593

    Article  Google Scholar 

  156. Idham MF, Falyouna O, Eljamal R, Maamoun I, Eljamal O (2022) Chloramphenicol removal from water by various precursors to enhance graphene oxide-iron nanocomposites. J Water Process Eng 50:103289. https://doi.org/10.1016/j.jwpe.2022.103289

    Article  Google Scholar 

  157. Zhou YZ, Wang T, Zhi D, Guo BL, Zhou YY, Nie J, Huang AQ, Yang Y, Huang HL, Luo L (2019) Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review. J Mater Sci 54(19):12171–12188. https://doi.org/10.1007/s10853-019-03606-5

    Article  CAS  Google Scholar 

  158. Li YY, Zhu Y, Yan XR, Zhang GX, Yan GY, Li H (2023) Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. Sci Total Environ 883:163676. https://doi.org/10.1016/j.scitotenv.2023.163676

    Article  CAS  Google Scholar 

  159. Xu Y, Guo Q, Li Y, Qin LJ, Zhang KG, Liu GR, Yuan CG (2022) Stabilization of nano zero-valent iron by electrospun composite mat with good catalysis and recyclability. J Clean Prod 363:132459. https://doi.org/10.1016/j.jclepro.2022.132459

    Article  CAS  Google Scholar 

  160. Yu XL, ** X, Wang N, Yu YY, Zhu XF, Chen MQ, Zhong YM, Sun JT, Zhu LZ (2022) Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: mechanism and risk assessment using environmental metabolomics. J Hazard Mater 428:128244. https://doi.org/10.1016/j.jhazmat.2022.128244

    Article  CAS  Google Scholar 

  161. Wang P, Chen XT, Liang XF, Cheng MM, Ren LH (2019) Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. Bioresource Technol 293:122092. https://doi.org/10.1016/j.biortech.2019.122092

    Article  CAS  Google Scholar 

  162. Qiao J, Jiao W, Liu Y (2020) Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process. Green Energy Environ 6:910–919. https://doi.org/10.1016/j.gee.2020.07.018

    Article  CAS  Google Scholar 

  163. Chekli L, Bayatsarmadi B, Sekine R, Sarkar B, Shen AM, Scheckel KG, Skinner W, Naidu R, Shon HK, Lombi E, Donner E (2016) Analytical characterisation of nanoscale zero-valent iron: a methodological review. Anal Chim Acta 903:13–35. https://doi.org/10.1016/j.aca.2015.10.040

    Article  CAS  Google Scholar 

  164. Wang Y, Ji XM, ** RC (2021) How anammox responds to the emerging contaminants: status and mechanisms. J Environ Manage 293:112906. https://doi.org/10.1016/j.jenvman.2021.112906

    Article  CAS  Google Scholar 

  165. Eljamal O, Maamoun I, Alkhudhayri S, Eljamal R, Falyouna O, Tanaka K, Kozai N, Sugihara Y (2022) Insights into boron removal from water using Mg-Al-LDH: reaction parameters optimization & 3D-RSM modeling. J Water process Eng 46:102608. https://doi.org/10.1016/j.jwpe.2022.102608

    Article  Google Scholar 

  166. Sun P, Wang ZQ, An SW, Zhao J, Yan YC, Zhang DJ, Wu ZE, Shen BX, Lyu HH (2022) Biochar-supported nZVI for the removal of Cr(VI) from soil and water: advances in experimental research and engineering applications. J Environ Manage 316:115211. https://doi.org/10.1016/j.jenvman.2022.115211

    Article  CAS  Google Scholar 

  167. Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K (2019) Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Total Environ 656:808–833. https://doi.org/10.1016/j.scitotenv.2018.11.257

    Article  CAS  Google Scholar 

  168. Garcia AN, Boparai HK, de Boer CV, Chowdhury AIA, Kocur CMD, Austrins LM, Herrera J, O’Carroll DM (2020) Fate and transport of sulfidated nano zerovalent iron (S-nZVI): a field study. Water Res 170:115319. https://doi.org/10.1016/j.watres.2019.115319

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (41472232).

Author information

Authors and Affiliations

Authors

Contributions

Yan Xu: creating the idea, visualization, investigation, collecting review of literature, creating tables and figures, and writing the original draft. Bi Lepohi Guy Laurent Zanli: writing—review and editing. Jiawei Chen: resources, conceptualization, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Jiawei Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Carbothermal reduction was the most cost-effective way and green synthesis was expected to in-situ nano-zero-valent iron synthesis.

• High adaptability and low habitat impact were preferred for modification and encapsulation technology.

• Modification and encapsulation technology gradually piloted and DC electric field–introduced effectively reduced costs.

• Chemical analysis was more microscopic and bioremediation research was more mature.

• Biochar encapsulated, surface vulcanizated, and carboxymethyl cellulose-modified nano-zero-valent iron were piloted in in-situ groundwater remediation technology.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zanli, B.L.G.L. & Chen, J. New consideration on the application of nano-zero-valent iron (nZVI) in groundwater remediation: refractions to existing technologies. J Nanopart Res 26, 11 (2024). https://doi.org/10.1007/s11051-023-05919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05919-8

Keywords

Navigation