Log in

High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper aims in a simulation work of a novel hybrid heterostructure based on carbon nanotubes as absorber layer with its unique electronic properties in semiconductor technology, and copper barium tin sulfide (CBTS) compound as a back surface field. Cell optimization was investigated in SCAPS–1D software for the architectures ITO/CdS/SWCNTs and ITO/CdS/SWCNTs/CBTS. The device performance and the influence of different materials parameters such as thickness, carrier concentration, and defect density are analyzed in this article. After adding the BSF layer and optimized physical parameters, promising results were achieved with PCE of 30.92%, Voc of 0.83 V, Jsc of 43.47 mA/cm2, and FF of 86.18%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

µn (\({\mathrm{cm}}^{2}\)/Vs):

Electron mobility

µp (\({\mathrm{cm}}^{2}\)/Vs):

Hole mobility

\({\mathrm{N}}_{\mathrm{D}}\) (\({\mathrm{cm}}^{-3}\)):

Shallow uniform donor density

\({\mathrm{N}}_{\mathrm{A}}\) (\({\mathrm{cm}}^{-3}\)):

Shallow uniform acceptor density

Ve(cm/s):

Electron thermal velocity

Vh(cm/s):

Hole thermal velocity

Nt (\({\mathrm{cm}}^{-3}\)):

Defect density

\(\mathrm{\varphi }(\mathrm{ev})\) :

Metal work function

\(\mathrm{Se}({~}^{\mathrm{cm}}\!\left/ \!{~}_{\mathrm{s}}\right.)\) :

Surface recombination velocity for electrons

\(\mathrm{Sh}({~}^{\mathrm{cm}}\!\left/ \!{~}_{\mathrm{s}}\right.)\) :

Surface recombination velocity for holes

V oc (V) :

Open circuit voltage

J sc (mA/cm 2 ) :

Short circuit current density

Q e (%) :

Quantum efficiency

Rs ( \({{\varvec{\Omega}}.\mathbf{c}\mathbf{m}}^{2})\) :

Series resistance

R sh ( \({{\varvec{\Omega}}.\mathbf{c}\mathbf{m}}^{2})\) :

Shunt resistance

W(µm) :

Thickness

E g (eV) :

Band gap

χ (eV) :

Electron affinity

ε r :

Dielectric permittivity (relative)

N c ( \({\mathbf{c}\mathbf{m}}^{-3}\) ) :

CB effective density of states

N v ( \({\mathbf{c}\mathbf{m}}^{-3}\) ) :

VB effective density of states

SWCNTs:

Single walled carbon nanotubes

CdS:

Cadmium sulfide

ITO:

Indium tin oxide

CBTS:

Copper barium tin sulfide

WT:

Working temperature

PCE(ɳ(%)) :

Power conversion efficiency

BSF :

Back surface field

TCO :

Transparent conductive oxide

FF(%) :

Fill factor

References

  1. Tifidat K, Maouhoub N, Benahmida A (2021) An efficient numerical method and new analytical model for the prediction of the five parameters of photovoltaic generators under non-STC conditions. E3S Web Conf 297:01034. https://doi.org/10.1051/e3sconf/202129701034

    Article  CAS  Google Scholar 

  2. Ghobadi A, Yousefi M, Minbashi M, Kordbacheh AHA, Abdolvahab AH, Gorji NE (2020) Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt Mater 107:109927. https://doi.org/10.1016/j.optmat.2020.109927

    Article  CAS  Google Scholar 

  3. Bae SH, Zhao H, Hsieh YT, Zuo L, De Marco N, Rim YS, Li G, Yang Y (2016) Printable solar cells from advanced solution-processible materials. Chem 1:197–219. https://doi.org/10.1016/j.chempr.2016.07.010

    Article  CAS  Google Scholar 

  4. Meher SR, Balakrishnan L, Alex ZC (2016) Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct 100:703–722. https://doi.org/10.1016/j.spmi.2016.10.028

    Article  CAS  Google Scholar 

  5. Wang S, Zhang L, Zhang Z, Ding L, Zeng Q, Wang Z, Liang X, Gao M, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng LM (2009) Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode. J Phys Chem C 113:6891–6893. https://doi.org/10.1021/jp901282h

    Article  CAS  Google Scholar 

  6. Wang F, Matsuda K (2019) Applications of carbon nanotubes in solar cells. Springer Int Publ. https://doi.org/10.1007/978-3-319-92917-0_20

    Article  Google Scholar 

  7. Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88:1–4. https://doi.org/10.1063/1.2179372

    Article  CAS  Google Scholar 

  8. Wieland L, Li H, Rust C, Chen J, Flavel BS (2021) Carbon nanotubes for photovoltaics: from lab to industry. Adv Energy Mater 11 https://doi.org/10.1002/aenm.202002880

  9. Kymakis E, Amaratunga GAJ (2005) Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev Adv Mater Sci 10:300–305

    CAS  Google Scholar 

  10. Xosrovashvili G, Gorji NE (2014) Numerical simulation of carbon nanotubes/GaAs hybrid PV devices with AMPS-1D. Int J Photoenergy 2014 https://doi.org/10.1155/2014/784857

  11. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms7305

    Article  CAS  Google Scholar 

  12. Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, **ao S, Yang S (2017) Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42:322–333. https://doi.org/10.1016/j.nanoen.2017.11.003

    Article  CAS  Google Scholar 

  13. Al-Bahrani MR, Ahmad W, Sen Ruan S, Yang Z, Cheng Z, Gao Y (2015) Layer-by-layer deposition of CNT- and CNT+ hybrid films for platinum free counters electrodes of dye-sensitized-solar-cells. RSC Advances 5:95551–95557. https://doi.org/10.1039/c5ra15939c

    Article  CAS  Google Scholar 

  14. Sgobba V, Guldi DM (2008) Carbon nanotubes as integrative materials for organic photovoltaic devices. J Mater Chem 18:153–157. https://doi.org/10.1039/b713798m

    Article  CAS  Google Scholar 

  15. Khan D, Ali Z, Asif D, Kumar Panjwani M, Khan I (2021) Incorporation of carbon nanotubes in photoactive layer of organic solar cells. Ain Shams Eng J 12:897–900. https://doi.org/10.1016/j.asej.2020.06.002

    Article  Google Scholar 

  16. Khan D, Tan ZA, Khan I, Panjwani MK (2018) A review of the challenges and possibilities of using carbon nanotubes in organic solar cells. Sci Adv Mater 10:747–760. https://doi.org/10.1166/sam.2018.3260

    Article  CAS  Google Scholar 

  17. Von Roos O (1978) A simple theory of back surface field (BSF) solar cells. J Appl Phys 49:3503–3511. https://doi.org/10.1063/1.325262

    Article  Google Scholar 

  18. Ge J, Koirala P, Grice CR, Roland PJ, Yu Y, Tan X, Ellingson RJ, Collins RW, Yan Y (2017) Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv Energy Mater 7 https://doi.org/10.1002/aenm.201601803

  19. Shin D, Saparov B, Zhu T, Huhn WP, Blum V, Mitzi DB (2016) BaCu2Sn(S, Se)4: earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780. https://doi.org/10.1021/acs.chemmater.6b01832

    Article  CAS  Google Scholar 

  20. Khattak YH, Baig F, Toura H, Beg S, Soucase BM (2019) Efficiency enhancement of Cu2BaSnS4 experimental thin-film solar cell by device modeling. J Mater Sci 54:14787–14796. https://doi.org/10.1007/s10853-019-03942-6

    Article  CAS  Google Scholar 

  21. Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  22. Ahmmed S, Aktar A, Hossain J, Ismail ABM (2020) Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Sol Energy 207:693–702. https://doi.org/10.1016/j.solener.2020.07.003

    Article  CAS  Google Scholar 

  23. Erkan ME, Chawla V, Scarpulla MA (2016) Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3 J Appl Phys 119 https://doi.org/10.1063/1.4948947.

  24. Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS (2010) Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl Phys Lett 96 https://doi.org/10.1063/1.3284657

  25. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Double-walled carbon nanotube solar cells. Nano Lett 7:2317–2321. https://doi.org/10.1021/nl070961c

    Article  CAS  Google Scholar 

  26. Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K (2021) Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol Energy 227:13–22. https://doi.org/10.1016/j.solener.2021.08.084

    Article  CAS  Google Scholar 

  27. Biplab SRI, Ali MH, Moon MMA, Pervez MF, Rahman MF, Hossain J (2020) Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J Comput Electron 19:342–352. https://doi.org/10.1007/s10825-019-01433-0

    Article  CAS  Google Scholar 

  28. Sarker S, Islam MT, Rauf A, Al Jame H, Jani MR, Ahsan S, Islam MS, Nishat SS, Shorowordi KM, Ahmed S (2021) A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations. Solar Energy 225:471–485. https://doi.org/10.1016/j.solener.2021.07.057

    Article  CAS  Google Scholar 

  29. Kaminski A, Vandelle B, Fave A, Boyeaux JP, Nam LQ, Monna R, Sarti D, Laugier A (2002) Aluminium BSF in silicon solar cells. Sol Energy Mater Sol Cells 72:373–379. https://doi.org/10.1016/S0927-0248(01)00185-4

    Article  CAS  Google Scholar 

  30. Kohara N, Nishiwaki S, Hashimoto Y, Negami T, Wada T (2001) Electrical properties of the Cu(In, Ga)Se2/MoSe2/Mo structure. Sol Energy Mater Sol Cells 67:209–215. https://doi.org/10.1016/S0927-0248(00)00283-X

    Article  CAS  Google Scholar 

  31. Yang X, Chen B, Chen J, Zhang Y, Liu W, Sun Y (2018) ZnS thin film functionalized as back surface field in Si solar cells. Mater Sci Semicond Process 74:309–312. https://doi.org/10.1016/j.mssp.2017.08.011

    Article  CAS  Google Scholar 

  32. Guirdjebaye N, Ouédraogo S, TeyouNgoupo A, MbopdaTcheum GL, Ndjaka JMB (2019) Junction configurations and their impacts on Cu(In, Ga)Se2 based solar cells performances. Opto-Electron Rev 27:70–78. https://doi.org/10.1016/j.opelre.2019.02.001

    Article  Google Scholar 

  33. Heriche H, Rouabah Z, Bouarissa N (2017) New ultra thin CIGS structure solar cells using SCAPS simulation program. Int J Hydrogen Energy 42:9524–9532. https://doi.org/10.1016/j.ijhydene.2017.02.099

    Article  CAS  Google Scholar 

  34. Bouich A, Hartiti B, Ullah S, Ullah H, Touhami ME, Santos DMF, Mari B (2019) Experimental, theoretical, and numerical simulation of the performance of CuIn x Ga (1–x) S 2 -based solar cells. Optik 183:137–147. https://doi.org/10.1016/j.ijleo.2019.02.067

    Article  CAS  Google Scholar 

  35. van Dyk EE, Meyer EL (2004) Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renew Energy 29:333–344. https://doi.org/10.1016/S0960-1481(03)00250-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Marc Burgelman of the University of Gent in Belgium for supplying SCAPS 1-D simulation software, and they thank everyone who supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essaadia Oublal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The goal of this paper is to simulate a novel hybrid heterostructure based on Carbon Nanotubes as the absorber layer, which has unique electrical features in semiconductor technology, this is the novelty of this work because this material have not been studied widely in this domain although its great properties and it had given interesting results.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oublal, E., Ait Abdelkadir, A. & Sahal, M. High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software. J Nanopart Res 24, 202 (2022). https://doi.org/10.1007/s11051-022-05580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05580-7

Keywords

Navigation