Log in

Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Conventional copper indium gallium diselenide (CIGS)-based solar cells offer higher efficiency than other second-generation technologies such as hydrogenated amorphous silicon (a-Si:H)- or cadmium telluride (CdTe)-based solar cells, but higher manufacturing cost due to the use of the rare metals indium and gallium. The purpose of the work presented herein is to improve the efficiency of such devices by using cheaper materials. Accordingly, a back-surface field layer made of low-cost and widely available barium silicide (BaSi2) with a thickness of 0.3 µm is introduced for the first time into the basic CIGS solar cell structure consisting of Al/ZnO/CdS/CIGS/Mo, resulting in the alternative structure of Al/FTO/CdS/CIGS/BaSi2/Mo, with fluorine-doped tin oxide (FTO) as the window layer. One-dimensional simulations of the solar cell capacitance are employed to study the photovoltaic parameters such as the power conversion efficiency, short-circuit current density, open-circuit voltage, fill factor, and quantum efficiency of the devices. The thickness of the CIGS absorber layer is varied from 0.1 to 3 µm to optimize the device. Besides, the effects of the acceptor ion and bulk defect densities in the CIGS absorber layer, cell resistances, and operating temperature on the overall performance are also investigated. The proposed structure offers an efficiency of 26.24% with a thin CIGS layer of only 0.8 µm. In addition to reduced CIGS thickness and cost, the presented approach results in CIGS solar cells with enhanced performance compared with previously reported conventional designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alhammadi, S., Park, H., Kim, W.K.: Optimization of intrinsic ZnO thickness in Cu(In, Ga)Se2-based thin film solar cells. Materials (2019). https://doi.org/10.3390/ma12091365

    Article  Google Scholar 

  2. Bouich, A., Hartiti, B., Ullah, S., Ullah, H., Touhami, M.E., Santos, D.M.F., Mari, B.: Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1–x)Se2-based solar cells. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.02.067

    Article  Google Scholar 

  3. Moon, M.M.A., Rahman, M.F., Hossain, J., Ismail, A.B.M.: Comparative study of the second generation a-Si:H, CdTe, and CIGS thin-film solar cells. Adv. Mater. Res. (2019). https://doi.org/10.4028/www.scientific.net/AMR.1154.102

    Article  Google Scholar 

  4. Candelise, C., Spiers, J.F., Gross, R.J.K.: Materials availability for thin film (TF) PV technologies development: a real concern? Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2011.06.012

    Article  Google Scholar 

  5. Heriche, H., Rouabah, Z., Bouarissa, N.: New ultra thin CIGS structure solar cells using SCAPS simulation program. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.02.099

    Article  Google Scholar 

  6. Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.L.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu(In,Ga)Se2 based solar cells performances. Opto-Electron. Rev. (2019). https://doi.org/10.1016/j.opelre.2019.02.001

    Article  Google Scholar 

  7. Oyedele, S.O., Soucase, B.M., Aka, B.: Numerical simulation and performance optimization of Cu(In,Ga)Se2 solar cells. IOSR J. Appl. Phys. (2016). https://doi.org/10.9790/4861-0804040111

    Article  Google Scholar 

  8. Ando, Y., Ishizuka, S., Wang, S., Chen, J., Islam, M.M., Shibata, H., Akimoto, K., Sakurai, T.: Relationship between bandgap grading and carrier recombination for Cu(In,Ga)Se2-based solar cells. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.08RC08

    Article  Google Scholar 

  9. Ramanathan, K., Contreras, M.A., Perkins, C.L., Asher, S., Hasoon, F.S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., Duda, A.: Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt. Res. Appl. (2003). https://doi.org/10.1002/pip.494

    Article  Google Scholar 

  10. Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. (2008). https://doi.org/10.1002/pip.822

    Article  Google Scholar 

  11. Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 53). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3102

    Article  Google Scholar 

  12. Daoudia, A.K., Hassouani, Y.E., Benami, A.: Investigation of the effect of thickness, band gap and temperature on the efficiency of CIGS solar cells through SCAPS-1D. Int. J. Eng. Tech. Res. (IJETR) 6, 71–75 (2016)

    Google Scholar 

  13. Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Proc. (2015). https://doi.org/10.1016/j.egypro.2015.07.809

    Article  Google Scholar 

  14. Robin, M.S.R., Mansoor, M., Rasmi, M., Sarkar, M.S.Z., Rabbi, A.S.M., Mamun, A.: Numerical modeling and analysis of ultra thin film Cu(In,Ga)Se2 solar cell using SCAPS-1D. In: International Conference on Electrical Engineering and Information and Communication Technology (iCEEiCT) (IEEE), 22–24th Sept. 2016, MIST, Dhaka, Bangladesh. https://doi.org/10.1109/CEEICT.2016.7873169

  15. Benabbas, S., Rouabah, Z., Heriche, H., Chelali, N.: A numerical study of high efficiency ultra-thin CdS/CIGS solar cells. Afr. J. Sci. Technol. Innov. Dev. (2016). https://doi.org/10.1080/20421338.2015.1118929

    Article  Google Scholar 

  16. Sylla, A., Touré, S., Vilcot, J.-P.: Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer. Open J. Model. Simul. (2017). https://doi.org/10.4236/ojmsi.2017.54016

    Article  Google Scholar 

  17. AlZoubi, T., Moustafa, M.: Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS. Int. J. Smart Grid Clean Energy (2019). https://doi.org/10.12720/sgce.8.3.291-298

    Article  Google Scholar 

  18. Kohara, N., Nishiwaki, S., Hashimoto, Y., Negami, T., Wada, T.: Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells (2001). https://doi.org/10.1016/S0927-0248(00)00283-X

    Article  Google Scholar 

  19. Ahamed, E.M.K.I., Bhowmik, S., Matin, M.A., Amin, N.: Highly efficient ultra thin Cu(In,Ga)Se2 solar cell with tin Selenide BSF. In: 2017 International Conference on Electrical, Computer and Communication Engineering, February 16–18, 2017, Cox’s Bazar, Bangladesh. IEEE. https://doi.org/10.1109/ECACE.2017.7912942

  20. Benabbas, S., Heriche, H., Rouabah, Z., Chelali, N.: Enhancing the efficiency of CIGS thin film solar cells by inserting novel back surface field (SnS) layer. In: 2014 North African Workshop on Dielectric Materials for Photovoltaic Systems, October 26–27, 2014, Algeria. IEEE. https://doi.org/10.1109/NAWDMPV.2014.6997611

  21. Moon, M.M.A., Ali, M.H., Rahman, M.F., Kuddus, A., Hossain, J., Ismail, A.B.M.: Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab49e8

    Article  Google Scholar 

  22. Doorene, S.V.: Barium disilicide: Development of a novel, low cost and earth abundant absorber material for thin film solar cell applications. MS Thesis, Sustainable Energy Technology, Delft University of Technology, Delft, Netherlands, June 6, 2017. https://repository.tudelft.nl/islandora/object/uuid%3A177b86f2-cb70-4e74-b02b-b0ee421c7e36 (2017). Accessed 25 July 2019

  23. Khan, M.A., Suemasu, T.: Donor and acceptor levels in impurity-doped semiconducting BaSi2 thin films for solar-cell application. Phys. Status Solidi A (2017). https://doi.org/10.1002/pssa.201700019

    Article  Google Scholar 

  24. Deng, T., Sato, T., Xu, Z., Takabe, R., Yachi, S., Yamashita, Y., Toko, K., Suemasu, T.: p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111). Appl. Phys. Express (2018). https://doi.org/10.7567/apex.11.062301

    Article  Google Scholar 

  25. Suemasu, T., Usami, N.: Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J. Phys. D Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/50/2/023001

    Article  Google Scholar 

  26. Kodalle, T., Choubrac, L., Arzel, L., Schlatmann, R., Barreau, N., Kaufmann, C.A.: Effects of KF and RbF post deposition treatments on the growth of the CdS buffer layer on CIGS thin films—a comparative study. Sol. Energy Mater. Sol. Cells (2019). https://doi.org/10.1016/j.solmat.2019.109997

    Article  Google Scholar 

  27. Frisk, C., Platzer-Björkman, C., Olsson, J., Szaniawski, P., Wätjen, J.T., Fjällström, V., Salomé, P., Edoff, M.: Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models. J. Phys. D Appl. Phys. (2014). https://doi.org/10.1088/0022-3727/47/48/485104

    Article  Google Scholar 

  28. Burgelman, M., Decock, K., Niemegeers, A.,Verschraegen, J., Degrave, S.: SCAPS Manual (version: 3.3.07). Department of Electronics and Information Systems, University of Gent, Belgium. http://scaps.elis.ugent.be (2018). Accessed 5 January 2019

  29. Dabbabi, S., Nasr, T.B., Kamoun, T.: CIGS solar cells for space applications: numerical simulation of the effect of traps created by high-energy electron and proton irradiation on the performance of solar cells. JOM (2018). https://doi.org/10.1007/s11837-018-2748-9

    Article  Google Scholar 

  30. Huang, J., Lee, K., Tseng, Y.: Analysis of the high conversion efficiencies ß-FeSi2 and BaSi2 n-i-p thin film solar cells. J. Nanomater. (2014). https://doi.org/10.1155/2014/238291

    Article  Google Scholar 

  31. Gloeckler, M.: Device physics of Cu(In, Ga)Se2 thin-film solar cells. Ph.D. dissertation, Colorado State University, Fort Collins (2005)

  32. Nakada, T., Mizutani, M.: 18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. (2002). https://doi.org/10.1143/JJAP.41.L165

    Article  Google Scholar 

  33. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., Powalla, M.: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. (2016). https://doi.org/10.1002/pssr.201600199

    Article  Google Scholar 

  34. Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. (2019). https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

  35. Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Bénédicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu(In, Ga)Se–ZnS. J. King Saud Univ. Sci (2018). https://doi.org/10.1016/j.jksus.2018.03.026

    Article  Google Scholar 

  36. Yang, X., Chen, B., Chen, J., Zhang, Y., Liu, W., Sun, Y.: ZnS thin film functionalized as back surface field in Si solar cells. Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2017.08.011

    Article  Google Scholar 

  37. Kaminski, A., Vandelle, B., Fave, A., Boyeaux, J.P., Nam, L.Q., Monna, R., Sarti, D., Laugier, A.: Aluminium BSF in silicon solar cells. Sol. Energ. Mater. Sol. Cells. (2002). https://doi.org/10.1016/S0927-0248(01)00185-4

    Article  Google Scholar 

  38. Kuddus, A., Rahman, M.F., Ahmmed, S., Hossain, J., Ismail, A.B.M.: Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.106168

    Article  Google Scholar 

  39. Benzetta, A.H., Abderrezek, M., Djeghlal, M.E.: Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back-surface field layer. Optik (2019). https://doi.org/10.1016/j.ijleo.2018.12.048

    Article  Google Scholar 

  40. Sohid, S.B., Kabalan, A.: Numerical analysis of ZnTe based solar cell with Sb2Te3 back surface field layer using SCAPS-1D. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, June 10–15, 2018, USA. IEEE. https://doi.org/10.1109/pvsc.2018.8547800

  41. Paul, D.I.: Experimental characterisation of photovoltaic modules with cells connected in different configurations to address nonuniform illumination effect. J. Renew. Energy (2019). https://doi.org/10.1155/2019/5168259

    Article  Google Scholar 

  42. Series Resistance. https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance (2019). Accessed 15 July 2019

  43. Omrani, M.K., Minbashi, M., Memarian, N., Kim, D.H.: Improve the performance of CZTSSe solar cells by applying a SnS BSF layer. Solid-State Electron. (2018). https://doi.org/10.1016/j.sse.2017.12.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marc Burgelman and his team at the Department of Electronics and Information Systems (ELIS), University of Gent, Belgium for providing the SCAPS software package, version 3.3.07.

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mahabub Alam Moon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biplab, S.R.I., Ali, M.H., Moon, M.M.A. et al. Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J Comput Electron 19, 342–352 (2020). https://doi.org/10.1007/s10825-019-01433-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01433-0

Keywords

Navigation