Log in

A study on waterlogging tolerance in sugarcane: a comprehensive review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum officinarum) is an important crop, native to tropical and subtropical regions and it is a major source of sugar and Bioenergy in the world. Abiotic stress is defined as environmental conditions that reduce growth and yield below the optimum level. To tolerate these abiotic stresses, plants initiate several molecular, cellular, and physiological changes. These responses to abiotic stresses are dynamic and complex; they may be reversible or irreversible. Waterlogging is an abiotic stress phenomenon that drastically reduces the growth and survival of sugarcane, which leads to a 15–45% reduction in cane’s yield. The extent of damage due to waterlogging depends on genotypes, environmental conditions, stage of development and duration of stress. An improved understanding of the physiological, biochemical, and molecular responses of sugarcane to waterlogging stress could help to develop new breeding strategies to sustain high yields against this situation. The present review offers a summary of recent findings on the adaptation of sugarcane to waterlogging stress in terms of growth and development, yield and quality, as well as biochemical and adaptive-molecular processes that may contribute to flooding tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Dwivedi RS (2022) Saccharide Sweet (SS) principles, classification, and structural and functional details of ss sweeteners and plants. In Alternative Sweet and Supersweet Principles: Natural Sweeteners and Plants 113–223. https://doi.org/10.1007/978-981-33-6350-2_4

  2. Zhao Y (2015) Towards Targeting Multiple Expression Cassettes into a Precharacterized Genomic Locus of Sugarcane for Predictable Transgene Performance (Doctoral dissertation, University of Florida)

  3. Vroom RJE, van den Berg M, Pangala SR, van der Scheer OE, Sorrell BK (2022) Physiological processes affecting methane transport by wetland vegetation–a review. Aquat Bot 182:103547. https://doi.org/10.1016/j.aquabot.2022.103547

    Article  Google Scholar 

  4. Carrow RN, Waddington DV, Rieke PE (2002) Turfgrass soil fertility and chemical problems: Assessment and management. Wiley

  5. Gomathi R, Gururaja Rao PN, Chandran K, Selvi A (2015) Adaptive responses of sugarcane to waterlogging stress: an over view. Sugar Tech 17:325–338. https://doi.org/10.1007/s12355-014-0319-0

    Article  CAS  Google Scholar 

  6. Sugiharto B (2018) Biotechnology of drought-tolerant sugarcane. Sugarcane-Technology Res 139–165. https://doi.org/10.5772/intechopen.72436

  7. Onyekachi OG, Boniface OO, Gemlack NF, Nicholas N (2019) The effect of climate change on abiotic plant stress: a review. Abiotic and biotic stress in plants, 17. https://doi.org/10.5772/intechopen.82681

  8. Yadav S, Jackson P, Wei X, Ross EM, Aitken K, Deomano E, Voss-Fels KP (2020) Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy 10(4):585. https://doi.org/10.3390/agronomy10040585

    Article  CAS  Google Scholar 

  9. Worku LA, Bachheti A, Bachheti RK, Rodrigues Reis CE, Chandel AK (2023) Agricultural residues as raw materials for pulp and paper production: overview and applications on membrane fabrication. Membranes 13(2):228. https://doi.org/10.3390/membranes13020228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar A, Kumar V, Singh B (2021) Cellulosic and hemicellulosic fractions of sugarcane bagasse: potential, challenges and future perspective. Int J Biol Macromol 169:564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175

    Article  CAS  PubMed  Google Scholar 

  11. Shanmuganathan M, Sudhagar R (2021) Chapter-2 The Prospective of Wide Hybridization: A Sugarcane Perspective. ISBN: Book DOI: Price:803/-, 17

  12. Metcalfe CJ, Li J, Giorgi D, Doležel J, Piperidis N, Aitken KS (2019) Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Sci Rep 9(1):19362. https://doi.org/10.1038/s41598-019-55652-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomson VA, Herrera M, Austin JJ (2022) Commensals/Domesticates on Rapa Nui: What Can Their Phylogeographic Patterns Tell Us About the Discovery and Settlement of the Island. In The Prehistory of Rapa Nui (Easter Island) Towards an Integrative Interdisciplinary Framework 41–62. https://doi.org/10.1007/978-3-030-91127-0_3

  14. Dinesh Babu KS, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar TR (2022) A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genet Resour Crop Evol 69(8):2623–2643. https://doi.org/10.1007/s10722-022-01430-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Großkinsky DK, Syaifullah SJ, Roitsch T (2018) Integration of multi-omics techniques and physiological phenoty** within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot 69(4):825–844

    Article  PubMed  Google Scholar 

  16. Adil S, Quraishi A (2023) A brief overview of plant abiotic stresses. NewBioWorld 5(1):31–36. https://doi.org/10.52228/NBW-JAAB.2023-5-1-6

    Article  Google Scholar 

  17. Ali Q, Haider MZ, Shahid S, Aslam N, Shehzad F, Naseem J, Hussain SM (2019) Role of amino acids in improving abiotic stress tolerance to plants. In Plant tolerance to environmental stress 175–204

  18. Trivedi N (2021) Improved plant resistance by phytomicrobiome community towards biotic and abiotic stresses. Phytomicrobiome Interact Sustainable Agric 207–216. https://doi.org/10.1002/9781119644798.ch11

  19. Allan C, Tayagui A, Hornung R, Nock V (2023) Canterbury. Ac. Nz Specialty Section this article was submitted to Plant Abiotic Stress, a section of the journal. Women in plant science-redox biology of plant abiotic stress 2022:119

  20. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field J. Exp Bot 63(10):3523–3543. https://doi.org/10.1093/jxb/ers100

    Article  CAS  Google Scholar 

  21. Manjaya JG, Gupta SK (2023) Mutation Breeding for Adaptation to Climate Change in Seed Propagated Crops. In Advanced Crop Improvement, Volume 2: Case Studies of Economically Important Crops 197–229. https://doi.org/10.1007/978-3-031-26669-0_8

  22. Khan MSS, Ahmed S, ul Ikram A, Hannan F, Yasin MU, Wang J, Chen J (2023) Phytomelatonin: a key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 102805. https://doi.org/10.1016/j.redox.2023.102805

  23. Sharma S, Sharma J, Soni V, Kalaji HM, Elsheery NI (2021) Waterlogging tolerance: a review on regulative morpho-physiological homeostasis of crop plants. J Water Land Dev 16–28. https://doi.org/10.1111/pce.13207

  24. Mira MM, Hill RD, Hilo A, Lange MR, Robertson S, Igamberdiev AU, Stasolla C (2023) Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. J Plant Physiol. kiad344

  25. Chen S, Ten Tusscher KH, Sasidharan R, Dekker SC, de Boer HJ (2023) Parallels between drought and flooding: an integrated framework for plant eco-physiological responses to water stress. J Plant Interact 4(4):175–187. https://doi.org/10.1002/pei3.10117

    Article  CAS  Google Scholar 

  26. Kaur G, Singh G, Motavalli PP, Nelson KA, Orlowski JM, Golden BR (2020) Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agron J 112(3):1475–1501. https://doi.org/10.1002/agj2.20093

    Article  Google Scholar 

  27. Pais IP, Moreira R, Semedo JN, Ramalho JC, Lidon FC, Coutinho J, Scotti-Campos P (2022) Wheat crop under Waterlogging: potential soil and Plant effects. Plants 12(1):149. https://doi.org/10.3390/plants12010149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corwin DL (2021) Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci 72(2):842–862. https://doi.org/10.1111/ejss.13010

    Article  Google Scholar 

  29. Ejiri M, Fukao T, Miyashita T, Shiono K (2021) A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breed Sci 71(1):40–50. https://doi.org/10.1270/jsbbs.20110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vwioko E, Adinkwu O, El-Esawi MA (2017) Comparative physiological, biochemical, and genetic responses to prolonged waterlogging stress in okra and maize given exogenous ethylene priming. Front Physiol 8:632. https://doi.org/10.3389/fphys.2017.00632

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karthika KS, Rashmi I, Parvathi MS (2018) Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant nutrients and abiotic stress tolerance 1–49. https://doi.org/10.1007/978-981-10-9044-8_1

  32. Bodah ET (2017) Root rot diseases in plants: a review of common causal agents and management strategies. Agric Res Technol Open Access J 5:555661

    Google Scholar 

  33. Pais IP, Moreira R, Semedo JN, Ramalho JC, Lidon FC, Coutinho J, Scotti-Campo P (2022) Wheat crop under Waterlogging: potential soil and Plant effects. Plants 12(1):149. https://doi.org/10.3390/plants12010149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suganya A, Saravanan A, Manivannan N (2020) Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: an overview. Commun Soil Sci Plant Anal 51(15):2001–2021. https://doi.org/10.1080/00103624.2020.1820030

    Article  CAS  Google Scholar 

  35. Sage RF (2020) Global change biology: a primer. Glob Chang Biol 26(1):3–30. https://doi.org/10.1111/gcb.14893

    Article  PubMed  Google Scholar 

  36. Qamar R, Shafaat S, Javeed HMR (2023) Management of crops in Water-Logged Soil. Disaster Risk Reduct Agric 233–275. https://doi.org/10.1007/978-981-99-1763-1_12

  37. Naorem A, Jayaraman S, Dang YP, Dalal RC, Sinha NK, Rao CS, Patra AK (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy 13(1):220. https://doi.org/10.3390/agronomy13010220

    Article  CAS  Google Scholar 

  38. Schmitt J, Offermann F, Söder M, Frühauf C, Finger R (2022) Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 112:102359. https://doi.org/10.1016/j.foodpol.2022.102359

    Article  Google Scholar 

  39. Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Saxena AK (2022) Linking soil microbial diversity to modern agriculture practices: a review. Int J Environ Res Public Health 19(5):3141. https://doi.org/10.3390/ijerph19053141

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nandargikar P, Jani N, Rao GP, Solomon S (2023) The metabolic interaction of potassium salt of active phosphorus (psap) and its stimulatory effects on the growth and productivity of sugarcane under stressful environment. In Agro-industrial Perspectives on Sugarcane Production under Environmental Stress 403–426. https://doi.org/10.1007/978-981-19-3955-6_18

  41. Rai RK, Tripathi N, Gautam D, Singh P (2017) Exogenous application of ethrel and gibberellic acid stimulates physiological growth of late planted sugarcane with short growth period in sub-tropical India. J Plant Growth Regul 36:472–486. https://doi.org/10.1007/s00344-016-9655-5

    Article  CAS  Google Scholar 

  42. Jia W, Ma M, Chen J, Wu S (2021) Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int J Mol Sci 22(3):1088. https://doi.org/10.3390/ijms22031088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaur G, Singh G, Motavalli PP, Nelson KA, Orlowski JM, Golden BR (2020) Impacts and management strategies for crop production in waterlogged or flooded soils: a review. J Agron 112(3):1475–1501. https://doi.org/10.1002/agj2.20093

    Article  Google Scholar 

  44. Gomathi R, Chandran K (2009) Effect of waterlogging on growth and yield of sugarcane clones. Sugarcane Breeding Institute (SBI-ICAR). Quarterly News Letter, 29(4):1–2

  45. Sanghera GS, Jamwal NS (2019) Perspective for genetic amelioration of sugarcane towards water logged conditions. Int J Pure Appl Biosci 7(3):484–502. https://doi.org/10.18782/2320-7051.7473

    Article  Google Scholar 

  46. Kidd DR, Valifard M, Qi J, Wisdom JMB, Simpson RJ, Ryan MH (2023) Survival analysis of germination data in response to temperature for Ornithopus species and other temperate pasture legumes. Funct Plant Biol 50(10):792–807. https://doi.org/10.1071/FP23095

    Article  CAS  PubMed  Google Scholar 

  47. Dubey RS, Srivastava RK, Pessarakli M (2021) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of plant and crop physiology 579–616

  48. Gomathi R, Chandran K (2012) Physiological markers for screening waterlogging resitance in sugarcane. In Proceedings of International Symposium on New Paradigms in Sugarcane Researc: ISNPSR 2012 [Abstract No. 129]. Coimbatore: SSRD and SBI

  49. Meena MR, Kumar R, Chinnaswamy A, Karuppaiyan R, Kulshreshtha N, Ram B (2020) Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 10:1–18. https://doi.org/10.1007/s13205-020-02416-w

    Article  Google Scholar 

  50. Wang B, Cai W, Li J, Wan Y, Guo C, Wilkes A, Liu K (2020) Leaf photosynthesis and stomatal conductance acclimate to elevated [CO2] and temperature thus increasing dry matter productivity in a double rice crop** system. Field Crops Res 248:107735. https://doi.org/10.1016/j.fcr.2020.107735

    Article  Google Scholar 

  51. Glaz B, Morris DR, Daroub SH (2004) Periodic flooding and water table effects on two sugarcane genotypes. J Agron 96(3):832–838. https://doi.org/10.2134/agronj2004.0832

    Article  Google Scholar 

  52. Morales F, Ancín M, Fakhet D, González-Torralba J, Gámez AL, Seminario A, Aranjuelo I (2020) Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 9(1):88. https://doi.org/10.3390/plants9010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sandanayake S, Hettithanthri O, Buddhinie PKC, Vithanage M (2022) Plant uptake of pesticide residues from agricultural soils. In Pesticides in Soils: Occurrence, Fate, Control and Remediation 197–223. https://doi.org/10.1007/698_2021_806

  54. Wu J, Wang J, Hui W, Zhao F, Wang P, Su C, Gong W (2022) Physiology of plant responses to water stress and related genes: a review. Forests 13(2):324. https://doi.org/10.3390/f13020324

    Article  Google Scholar 

  55. Sarkar AK, Sadhukhan S (2022) Imperative role of trehalose metabolism and trehalose-6‐phosphate signaling on salt stress responses in plants. Physiol Plant 174(1):e13647. https://doi.org/10.1111/ppl.13647

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura M, Noguchi K (2020) Tolerant mechanisms to O2 deficiency under submergence conditions in plants. Plant Res 133:343–371. https://doi.org/10.1007/s10265-020-01176-1

    Article  CAS  Google Scholar 

  57. Parida AK, Panda A, Rangani J (2018) Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In Plant metabolites and regulation under environmental stress 89–131. https://doi.org/10.1016/B978-0-12-812689-9.00005-4

  58. Zeng F, Shabala S, Maksimović JD, Maksimović V, Bonales-Alatorre E, Shabala L, Živanović BD (2018) Revealing mechanisms of salinity tissue tolerance in succulent halophytes: a case study for Carpobrotus Rossi. Plant Cell Environ 41(11):2654–2667. https://doi.org/10.1111/pce.13391

    Article  CAS  PubMed  Google Scholar 

  59. Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A (2010) Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3–17. https://doi.org/10.1007/s00709-009-0098-8

    Article  CAS  PubMed  Google Scholar 

  60. León J, Castillo MC, Gayubas B (2021) The hypoxia–reoxygenation stress in plants. J Exp Bot 72(16):5841–5856. https://doi.org/10.1093/jxb/eraa591

    Article  CAS  PubMed  Google Scholar 

  61. Moustakas M, Sperdouli I, Adamakis IDS, Moustaka J, İşgören S, Şaş B (2022) Harnessing the role of foliar applied salicylic acid in decreasing chlorophyll content to reassess photosystem II photoprotection in crop plants. Int J Mol Sci 23(13):7038. https://doi.org/10.3390/ijms23137038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sommer SG, Han E, Li X, Rosenqvist E, Liu F (2023) The Chlorophyll fluorescence parameter Fv/Fm correlates with loss of grain yield after severe drought in three wheat genotypes grown at two CO2 concentrations. Plants 12(3):436. https://doi.org/10.3390/plants12030436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chaturvedi AK, Dym O, Fluhr R (2022) PGRL1A redox states alleviate photo inhibition in Arabidopsis during step changes in light intensity. https://doi.org/10.1101/2022.06.07.492398. bioRxiv, 2022-06

  64. Zareei E, Karami F, Gholami M, Ershadi A, Avestan S, Aryal R, Farooq M (2021) Physiological and biochemical responses of strawberry crown and leaf tissues to freezing stress. BMC Plant Biol 21:1–17. https://doi.org/10.1186/s12870-021-03300-2

    Article  CAS  Google Scholar 

  65. Chávez-Arias CC, Gómez-Caro S, Restrepo-Díaz H (2019) Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy 9(5):213. https://doi.org/10.3390/agronomy9050213

    Article  CAS  Google Scholar 

  66. Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Hasanuzzaman M (2019) Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 8(7):196. https://doi.org/10.3390/plants8070196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miao Y, Bi Q, Qin H, Zhang X, Tan N (2020) Moderate drought followed by re-watering initiates beneficial changes in the photosynthesis, biomass production and Rubiaceae-type cyclopeptides (RAs) accumulation of Rubia Yunnanensis. Ind Crops Prod 148:112284. https://doi.org/10.1016/j.indcrop.2020.112284

    Article  CAS  Google Scholar 

  68. Saglam A, Chaerle L, Van Der Straeten D, Valcke R (2019) Promising monitoring techniques for plant science: thermal and chlorophyll fluorescence imaging. Photosynthesis Productivity Environ Stress 241–266. https://doi.org/10.1002/9781119501800.ch12

  69. Henningsen BM, Hon S, Covalla SF, Sonu C, Argyros DA, Barrett TF, Zelle RM (2015) Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl Environ Microbiol 81(23):8108–8117. https://doi.org/10.1128/AEM.01689-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Velasquez SM, Barbez E, Kleine-Vehn J, Estevez JM (2016) Auxin and cellular elongation J. Plant Physiol 170(3):1206–1215. https://doi.org/10.1104/pp.15.01863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang X, Li J, Ban L, Wu Y, Wu X, Wang Y, Gao H (2017) Functional characterization of a gibberellin receptor and its application in alfalfa biomass improvement. Sci Rep 7(1):41296. https://doi.org/10.1038/srep41296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wimalasekera R, Scherer GF (2018) Involvement of mitogen-activated protein kinases in abiotic stress responses in plants. In Plant metabolites and regulation under environmental stress 389–395. https://doi.org/10.1016/B978-0-12-812689-9.00021-2

  73. Eun HD, Ali S, Jung H, Kim K, Kim WC (2019) Profiling of ACC synthase gene (ACS11) expression in Arabidopsis induced by abiotic stresses. Appl Biol Chem 62(1):1–11. https://doi.org/10.1186/s13765-019-0450-4

    Article  CAS  Google Scholar 

  74. Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62(1):25–54. https://doi.org/10.1111/jipb.12899

    Article  CAS  PubMed  Google Scholar 

  75. Han G, Qiao Z, Li Y, Wang C, Wang B (2021) The roles of CCCH zinc-finger proteins in plant abiotic stress tolerance. Int J Mol Sci 22(15):8327. https://doi.org/10.3390/ijms22158327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khan M, Ali S, Al Azzawi TNI, Yun BW (2023) Nitric oxide acts as a Key Signaling Molecule in Plant Development under Stressful conditions Int. J Mol Sci 24(5):4782. https://doi.org/10.3390/ijms24054782

    Article  CAS  Google Scholar 

  77. Ayodeji FD, Shava B, Iqbal HM, Ashraf SS, Cui J, Franco M, Bilal M (2023) Biocatalytic versatilities and biotechnological prospects of laccase for a sustainable industry. Catal Lett 153(7):1932–1956. https://doi.org/10.1007/s10562-022-04134-9

    Article  CAS  Google Scholar 

  78. Li X, Su Q, Feng Y, Gao X, Wang B, Tahir MM, Zhao Z (2023) Identification and analysis of the xyloglucan endotransferase/hydrolase (XTH) family genes in apple. Sci Hortic 315:111990. https://doi.org/10.1016/j.scienta.2023.111990

    Article  CAS  Google Scholar 

  79. Ventura I, Brunello L, Iacopino S, Valeri MC, Novi G, Dornbusch T, Loreti E (2020) Arabidopsis phenoty** reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Sci Rep 10(1):16669. https://doi.org/10.1038/s41598-020-73704-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beamer ZG, Routray P, Choi WG, Spangler MK, Lokdarshi A, Roberts DM (2021) Aquaporin family lactic acid channel NIP2; 1 promotes plant survival under low oxygen stress in Arabidopsis. Plant Physiol 187(4):2262–2278. https://doi.org/10.1093/plphys/kiab196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Zhang Y, Liu G, Xu S, Dai J, Li W, Dong H (2021) Nitric oxide increases the biomass and lint yield of field-grown cotton under temporary waterlogging through physiological and molecular regulation. Field Crops Res 261:107989. https://doi.org/10.1016/j.fcr.2020.107989

    Article  Google Scholar 

  82. Chen R, Huang X, Qiu L, Fan Y, Zhang R, **e J, Li Y (2018) Changes in activities of key enzymes in sugarcane stem at different growing stages. Am J Plant Biology 3(2):21–28. https://doi.org/10.11648/j.ajpb.20180302.12

    Article  Google Scholar 

  83. Hrmova M, Stratilová B, Stratilová E (2022) Broad specific xyloglucan: xyloglucosyl transferases are formidable players in the re-modelling of plant cell wall structures. Int J Mol Sci 23(3):1656. https://doi.org/10.3390/ijms23031656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin RC, Kronmiller BA, Dombrowski JE (2021) Transcriptome analysis of lolium temulentum exposed to a combination of drought and heat stress. Plants 10(11):2247. https://doi.org/10.3390/plants10112247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hussain A, Liu J, Mohan B, Burhan A, Nasim Z, Bano R, Pajerowska-Mukhtar KM (2022) A genome-wide comparative evolutionary analysis of zinc finger-BED transcription factor genes in land plants. Sci Rep 12(1):12328. https://doi.org/10.1038/s41598-022-16602-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17(2):131–137. https://doi.org/10.1626/pps.17.131

    Article  CAS  Google Scholar 

  88. Pan R, Han H, Medison MB, Abou-Elwafa SF, Liu Y, Yang X, Zhang W (2021) Aerenchyma formation in the root of leaf‐vegetable sweet potato: programmed cell death initiated by ethylene‐mediated H2O2 accumulation. Physiol Plant 173(4):2361–2375. https://doi.org/10.1111/ppl.13587

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, Chen Y, Lu H, Kong X, Dai J, Li Z, Dong H (2016) Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crops Res 194:83–93. https://doi.org/10.1016/j.fcr.2016.05.006

    Article  Google Scholar 

  90. Pan DL, Wang G, Wang T, Jia ZH, Guo ZR, Zhang JY (2019) AdRAP2. 3, a novel ethylene response factor VII from Actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes. Int J Mol Sci 20(5):1189. https://doi.org/10.3390/ijms20051189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Butsayawarapat P, Juntawong P, Khamsuk O, Somta P (2019) Comparative transcriptome analysis of waterlogging-sensitive and tolerant zombi pea (Vigna vexillata) reveals energy conservation and root plasticity controlling waterlogging tolerance. Plants 8(8):264. https://doi.org/10.3390/plants8080264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xuan L, Hua J, Zhang F, Wang Z, Pei X, Yang Y, Creech DL (2021) Identification and functional analysis of ThADH1 and ThADH4 genes involved in tolerance to waterlogging stress in Taxodium hybrid ‘Zhongshanshan 406’. Genes 12(2):225. https://doi.org/10.3390/genes12020225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gong X, Xu Y, Li H, Chen X, Song Z (2022) Antioxidant activation, cell wall reinforcement, and reactive oxygen species regulation promote resistance to waterlogging stress in hot pepper (Capsicum annuum L). BMC Plant Biol 22(1):425. https://doi.org/10.1186/s12870-022-03807-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen H, Wu Q, Ni M, Chen C, Han C, Yu F (2022) Transcriptome analysis of endogenous hormone response mechanism in roots of Styrax tonkinensis under waterlogging. Front Plant Sci 13:896850. https://doi.org/10.3389/fpls.2022.896850

    Article  PubMed  PubMed Central  Google Scholar 

  95. Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U (2022) Real-time polymerase chain reaction: current techniques, applications, and role in COVID-19 diagnosis. Genes 13(12):2387. https://doi.org/10.3390/genes13122387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang T, Zhang M, Zhang N (2022) Modified Northern blot protocol for easy detection of mRNAs in total RNA using radiolabeled probes. BMC Genomics 23(1):1–11. https://doi.org/10.1186/s12864-021-08275-w

    Article  CAS  Google Scholar 

  97. Huang L, Yan H, Jiang X, Zhang X, Zhang Y, Huang X, Zhao B (2014) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in switchgrass under various abiotic stress conditions. Bioenerg Res 7:1201–1211. https://doi.org/10.1007/s12155-014-9457-1

    Article  CAS  Google Scholar 

  98. Dharavath B, Yadav N, Desai S, Sunder R, Mishra R, Ketkar M, Dutt A (2020) A one-step, one-tube real-time RT-PCR based assay with an automated analysis for detection of SARS-CoV-2. Heliyon 6(7). https://doi.org/10.1016/j.heliyon.2020.e04405

  99. Ma X, Meng R, Yu M, Guo N, Wang H, Zheng H, Sun C (2024) Label-free and low-background fluorescent structure-switching aptasensor for sensitive detection of staphylococcal enterotoxin a based on graphene oxide-assisted separation of ssDNA. Food Control 155:110105. https://doi.org/10.1016/j.foodcont.2023.110105

    Article  CAS  Google Scholar 

Download references

Funding

No funding has been received for writing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ashmitha K has written an original manuscript. Swetha R has contributed for writing a part of the manuscript. Dr. Rames C Panda has been reviewed and corrected the entire manuscript. Dr. T. Senthilvelan has been design the entire idea for making review paper, contributing writing, review and correction.

Corresponding author

Correspondence to T. Senthilvelan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publish

All the authors have read and approved the manuscript for publication.

Competing interests

All authors declared no potential competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalairaj, A., Rajendran, S., Panda, R.C. et al. A study on waterlogging tolerance in sugarcane: a comprehensive review. Mol Biol Rep 51, 747 (2024). https://doi.org/10.1007/s11033-024-09679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09679-z

Keywords

Navigation