Log in

Biased Online Parameter Inference for State-Space Models

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We consider Bayesian online static parameter estimation for state-space models. This is a very important problem, but is very computationally challenging as the state-of-the art methods that are exact, often have a computational cost that grows with the time parameter; perhaps the most successful algorithm is that of SM C2 (Chopin et al., J R Stat Soc B 75: 397–426 2013). We present a version of the SM C2 algorithm which has computational cost that does not grow with the time parameter. In addition, under assumptions, the algorithm is shown to provide consistent estimates of expectations w.r.t. the posterior. However, the cost to achieve this consistency can be exponential in the dimension of the parameter space; if this exponential cost is avoided, typically the algorithm is biased. The bias is investigated from a theoretical perspective and, under assumptions, we find that the bias does not accumulate as the time parameter grows. The algorithm is implemented on several Bayesian statistical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods (with discussion). J R Statist Soc Ser B 72:269–342

    Article  Google Scholar 

  • Andrieu C, Doucet A, Tadić V (2009) On-line parameter estimation in general state-space models using pseudo-likelihood. Unpublished Technical Report

  • Beskos A, Jasra A, Kantas N, Thiery A (2016) On the convergence of adaptive sequential Monte Carlo methods. Ann Appl Probab 26:1111–1146

    Article  MathSciNet  MATH  Google Scholar 

  • Borwanker J, Kallianpur G, Prakasa Rao BLS (1971) The Bernstein-Von Mises theorem for Markov processes. Ann Math Stat 42:1241–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Cappé O, Ryden T, Moulines É (2005) Inference in hidden Markov models. Springer, New York

    MATH  Google Scholar 

  • Centanni S, Minozzo M (2006) A Monte Carlo approach to filtering for a class of marked doubly stochastic Poisson processes. J Amer Stat Assoc 101:1582–1597

    Article  MathSciNet  MATH  Google Scholar 

  • Cérou F, Del Moral P, Guyader A (2011) A non-asymptotic variance theorem for un-normalized Feynman-Kac particle models. Ann Inst Henri Poincare 47:629–649

    Article  MATH  Google Scholar 

  • Chan H P, Heng C W, Jasra A (2016) Theory of parallel particle filters for hidden Markov models. Adv Appl Probab 48:69–87

    Article  MATH  Google Scholar 

  • Chopin N, Jacob P, Papaspiliopoulos O (2013) SM C2: a sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates. J R Stat Soc B 75:397–426

    Article  Google Scholar 

  • Crisan D, Miguez J (2014) Particle-kernel estimation of the filter density in state-space models. Bernoulli 20:1879–1929

    Article  MathSciNet  MATH  Google Scholar 

  • Crisan D, Miguez J (2014) Nested particle filters for online parameter estimation in discrete-time state-space Markov models. ar**v preprint

  • Deligiannidis G, Doucet A, Pitt M K (2015) The correlated pseudo-marginal method. ar**v preprint

  • Del Moral P (2004) Feynman-Kac formulae: genealogical and interacting particle systems with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Del Moral P (2013) Mean field simulation for Monte Carlo integration. Chapman & Hall, London

    MATH  Google Scholar 

  • Del Moral P, Doucet A, Jasra A (2006) Sequential Monte Carlo samplers. J R Stat Soc B 68:411–436

    Article  MathSciNet  MATH  Google Scholar 

  • Douc R, Moulines E, Olsson J, Van Handel R (2011) Consistency of the maximum likelihood estimator for general hidden Markov models. Ann Stat 39:474–513

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet A, Johansen A (2011) A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan et B, Rozovsky D (eds) Handbook of nonlinear filtering. Oxford University Press, Oxford

  • Fearnhead P (2002) MCMC, sufficient statistics and particle filters. J Comp Graph Stat 11:848–862

    Article  Google Scholar 

  • Gilks W R, Berzuini C (2001) Following a moving target - Monte Carlo inference for dynamic Bayesian models. J R Stat Soc B 63:127–146

    Article  MathSciNet  MATH  Google Scholar 

  • Jacob P, Murray L, Rubenthaler S (2015) Path storage in the particle filter. Stat Comp 25:487–496

    Article  MathSciNet  MATH  Google Scholar 

  • Kantas N, Doucet A, Singh S S, Maciejowski J M, Chopin N (2015) On particle methods for parameter estimation in state-space models. Stat Sci 30:328–351

    Article  MathSciNet  MATH  Google Scholar 

  • Polson NG, Stroud JR, Müller P (2008) Practical filtering with sequential parameter learning. J R Stat Soc B 70:413–428

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Jasra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moral, P.D., Jasra, A. & Zhou, Y. Biased Online Parameter Inference for State-Space Models. Methodol Comput Appl Probab 19, 727–749 (2017). https://doi.org/10.1007/s11009-016-9511-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-016-9511-x

Keywords

Mathematics Subject Classifications (2010)

Navigation