Log in

Numerical comparison of hydrothermal performance and entropy generation features of micro pin fin heat sinks with different multi-dimensional stepnesses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this document, the numerical analysis of the non-uniformity of the height of fins of a pin fin heat sink on the firs law and second law performances of the heat sink is conducted. Five different designs for changing the height of pin fins in the longitudinal and transverse directions are considered and their hydrothermal performance and entropy generation characteristics at different Reynolds numbers are investigated. After examining the changes in convection coefficient, maximum CPU temperature, uniformity of temperature distribution, thermal resistance and overall hydrothermal performance index, it was found that the best first law performance belongs to the case in which the height of the pin fins elevates in the longitudinal direction and linearly by moving away from the inlet of the device. For this case, the maximum overall hydrothermal performance index was equal to 1.099, which occurred at Reynolds number of 500. Investigating the performance of the heat sinks from the entropy generation viewpoint also revealed that the lowest total entropy generation rate belongs to the device in which the height of the fins declines in the longitudinal direction and linearly by moving away from the inlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cirillo L, Greco A, Masselli C. Development of an electronic circuit cooling system using elastocaloric effect: a FEM comparison among different configurations. Appl Therm Eng. 2023;219: 119463.

    Article  CAS  Google Scholar 

  2. Aviles JE, Paniagua-Guerra LE, Ramos-Alvarado B. Liquid-cooled heat sink design for a multilevel inverter switch with considerations for heat spreading and manufacturability. Appl Therm Eng. 2023;219: 119588.

    Article  Google Scholar 

  3. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    Article  CAS  Google Scholar 

  4. Samadi H, Hosseini MJ, Ranjbar AA, Pahamli Y. Thermohydraulic performance of new minichannel heat sink with grooved barriers. Int Commun Heat Mass Transf. 2023;144: 106753.

    Article  Google Scholar 

  5. Emam M, Soliman AMA, Abdelrahman MA, Attia AAA. Performance improvement of single-junction photovoltaic systems using a new design of a heat pipe-based heat sink: Experimental study. Appl Therm Eng. 2023;219: 119653.

    Article  CAS  Google Scholar 

  6. Hu X, Gong X, Zhu F, **ng X, Li Z, Zhang X. Thermal analysis and optimization of metal foam PCM-based heat sink for thermal management of electronic devices. Renew Energy. 2023;212:227–37.

    Article  CAS  Google Scholar 

  7. Zhang DX, Zhu CY, Duan XY, Gong L, Huang BH, Xu MH, Chen Y. Design and transient temperature control performance analysis of a novel hybrid PCM-based heat sink. J Energy Storage. 2023;72: 108450.

    Article  Google Scholar 

  8. Shailesh K, Naresh Y, Banerjee J. Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: an experimental study. Appl Therm Eng. 2023;229: 120552.

    Article  CAS  Google Scholar 

  9. Khan A, Hadi F, Akram N, Bashir MA, Ali HM, Janjua MM, Hussain A, Pasha RA, Janjua AB, Farukh F. Review of micro and mini channels, porous heat sinks with hydrophobic surfaces for single phase fluid flow. J Taiwan Inst Chem. 2022;132: 104186.

    Article  CAS  Google Scholar 

  10. Fathi M, Heyhat MM, Targhi MZ, Bigham S. Porous-fin microchannel heat sinks for future micro-electronics cooling. Int J Heat Mass Transf. 2023;202: 123662.

    Article  Google Scholar 

  11. Ronge H, Upalkar S, Wagh A, Krishnan S, Ramamoorthy S. Evaluations of corrugated macro-structure porous heat sinks for the combined heat dissipation and noise reduction performance. Int J Therm Sci. 2023;18: 108157.

    Article  Google Scholar 

  12. Zhong JF, Sedeh SN, Lv YP, Arzani B, Toghraie D. Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field. Powder Technol. 2021;387:251–60.

    Article  CAS  Google Scholar 

  13. Jalili B, Rezaeian A, Jalili P, Ommi F, Ganji DD. Numerical modeling of magnetic field impact on the thermal behavior of a microchannel heat sink. Case Stud Therm Eng. 2023;45:102944.

    Article  Google Scholar 

  14. Hajmohammadi MR, Gholamrezaie S, Ahmadpour A, Mansoori Z. Effects of applying uniform and non-uniform external magnetic fields on the optimal design of microchannel heat sinks. Int J Mech Sci. 2020;186: 105886.

    Article  Google Scholar 

  15. Wang Y, **a G, Li R, Li Q, Yan Z. Heat transfer enhancement in porous wall mini-channel heat sinks utilizing electric field: An experimental study. Int J Heat Mass Transf. 2023;203: 123803.

    Article  CAS  Google Scholar 

  16. Li T, Luo X, He B, Wang L, Zhang J, Liu Q. Flow boiling heat transfer enhancement in vertical minichannel heat sink with non-uniform microcavity arrays under electric field. Exp Therm Fluid Sci. 2023;149: 110997.

    Article  CAS  Google Scholar 

  17. Tilehnoee MH, Seyyedi SM, del Barrio EP, Sharifpour M. Heat transfer intensification of NEPCM-water suspension filled heat sink cavity with notches cooling tubes by applying the electric field. J Energy Storage. 2023;59: 106492.

    Article  Google Scholar 

  18. Sajid MU, Ali HM, Bicer Y. Exergetic performance assessment of magnesium oxide–water nanofluid in corrugated minichannel heat sinks: An experimental study. Int J Energy Res. 2022;46:9985–10001.

    Article  CAS  Google Scholar 

  19. Mukherjee S, Wcislik S, Khadanga V, Mishra PC. Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink. Case Stud Therm Eng. 2023;49:103241.

    Article  Google Scholar 

  20. Wang H, Chen X. Performance improvements of microchannel heat sink using Koch fractal structure and nanofluids. Structure. 2023;50:1222–31.

    Article  Google Scholar 

  21. Shahsavar A, Jafari M, Yildiz C, Moradvandi M, Arici M. On the cooling performance and entropy generation characteristics of a heat sink under ultrasonic vibration: Exploring the impact of porous medium. Int J Heat Mass Transf. 2023;215: 124500.

    Article  Google Scholar 

  22. Shahsavar A, Ghazizade-Ahsaee H, Askari IB, Setareh M. Numerical feasibility study of using ultrasonic surface vibration as a new technique for thermal management of the electronic devices. Energy Convers Manag. 2023;276: 116481.

    Article  Google Scholar 

  23. Shahsavar A, Ahsaee HG, Askari IB, Rashidi MM. The numerical analysis in heat transfer, fluid flow, and irreversibility of a pin-fin heatsink under the ultrasonic vibration with different transducer power assignment scenarios. Therm Sci Eng Prog. 2024;49: 102480.

    Article  Google Scholar 

  24. Acharya S. Thermo-fluidic analysis of microchannel heat sink with inline/staggered square/elliptical fins. Int Commun Heat Mass Transf. 2023;147: 106961.

    Article  Google Scholar 

  25. Zhao Z, Hu B, He J, Lin M, Ke H. Effect of fin shapes on flow boiling heat transfer with staggered fin arrays in a heat sink. Appl Therm Eng. 2023;225: 120179.

    Article  CAS  Google Scholar 

  26. Nawaz S, Babar H, Ali HM, Sajid MU, Janjua MM, Said Z, Tiwari AK, Sundar LS, Li C. Oriented square shaped pin-fin heat sink: Performance evaluation employing mixture based on ethylene glycol/water graphene oxide nanofluid. Appl Therm Eng. 2022;206: 118085.

    Article  CAS  Google Scholar 

  27. Ndao S, Peles Y, Jensen MK. Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet im**ement on micro pin fins. Int J Heat Mass Transf. 2014;70:856–63.

    Article  CAS  Google Scholar 

  28. Bhandari P, Rawat KS, Prajapati YK, Padalia D, Ranakoti L, Singh T. Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: a review. J Energy Storage. 2023;66: 107548.

    Article  Google Scholar 

  29. Shahsavar A, Shahmohammadi M, Askari IB. CFD simulation of the impact of tip clearance on the hydrothermal performance and entropy generation of a water-cooled pin-fin heat sink. Int Commun Heat Mass Transf. 2021;126: 105400.

    Article  Google Scholar 

  30. Atas A, Benam BP, Yagci V, Malyemez MC, Parlak M, Sadaghiani AK, Kosar A. On the effect of elliptical pin Fins, distribution pin Fins, and tip clearance on the performance of heat sinks in flow boiling. Appl Therm Eng. 2022;212: 118648.

    Article  Google Scholar 

  31. Bhandari P. Numerical investigations on the effect of multi-dimensional stepness in open micro pin fin heat sink using single phase liquid fluid flow. Int Commun Heat Mass Transf. 2022;138: 106392.

    Article  Google Scholar 

  32. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 1995.

    Google Scholar 

  33. Ali HM, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag. 2015;106:793–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Shahsavar or Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavar, A., Mohammadnazar, P. & Ali, H.M. Numerical comparison of hydrothermal performance and entropy generation features of micro pin fin heat sinks with different multi-dimensional stepnesses. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13064-0

Keywords

Navigation