Log in

4-(1H-tetrazole-5-yl-amino)-1,2,4,5-tetrazin-1-one (TATzO) metal salts: promising pyrotechnic agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three 4-(1H-tetrazole-5-yl-amino)-1,2,4,5-tetrazine-1-one (TATzO) metal salts, K2(TATzO)(H2O) (1) and Mg(TATzO)(H2O)6·2H2O (2) and Sr(TATzO)(H2O)4 (3), were synthesized and characterized using Fourier transform infrared (FTIR), elemental analysis, single-crystal X-ray diffraction, and powder X-ray diffraction patterns. The crystal structure and hydrogen bonding interactions have been analyzed. It turns out that 1 and 3 crystallize into a three-dimensional topological network and have strong ππ stacking and hydrogen bonding interactions. Furthermore, the geometric optimization of 13 was performed using B3LYP-D3/def2svp in Gaussian 16 software package and then analyzed by reduced density gradient. The thermal behavior was conducted using differential scanning calorimetry and thermogravimetric (TG). The decomposition temperature of the three complexes exceeds 250 °C, much higher than that of TATzO (230 °C). The thermal decomposition products of 1 were further studied using thermogravimetric-Fourier transform infrared-mass spectrometry (TG/FTIR/MS). The impact sensitivity test indicated that making complexes can help decrease the sensitivity of the original energetic ligand.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo Z, Wang Y, Liu X, Zhang C, Zhang Y, Ma H. Auxiliary ligand-directed synthesis of 3D energetic coordination polymer from discrete complex: enhanced energy density, thermal stability and energy performance. CrystEngComm. 2019;21(3):462–9. https://doi.org/10.1039/c8ce01891j.

    Article  CAS  Google Scholar 

  2. Herweyer D, Brusso JL, Murugesu M. Modern trends in “Green” primary energetic materials. New J Chem. 2021;45(23):10150–9. https://doi.org/10.1039/d1nj01227d.

    Article  CAS  Google Scholar 

  3. O’Sullivan OT, Zdilla MJ. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem Rev. 2020;120(12):5682–744. https://doi.org/10.1021/acs.chemrev.9b00804.

    Article  CAS  PubMed  Google Scholar 

  4. Ma Q, Huang S, Lu H, Nie F, Liao L, Fan G, et al. Energetic cocrystal, ionic salt, and coordination polymer of a perchlorate free high energy density oxidizer: influence of pK(a) modulation on their formation. Cryst Growth Des. 2019;19(2):714–23. https://doi.org/10.1021/acs.cgd.8b01293.

    Article  CAS  Google Scholar 

  5. Yang J, Yin X, Wu L, Wu J, Zhang J, Gozin M. Alkaline and earth alkaline energetic materials based on a versatile and multifunctional 1-aminotetrazol-5-one ligand. Inorg Chem. 2018;57(24):15105–11. https://doi.org/10.1021/acs.inorgchem.8b02183.

    Article  CAS  PubMed  Google Scholar 

  6. Karaghiosoff K, Klapoetke TM, Sabate CM. Nitrogen-rich compounds in pyrotechnics: alkaline earth metal salts of 5,5ʹ-hydrazine-1,2-diylbis(1H-tetrazole). Eur J Inorg Chem. 2009;2:238–50. https://doi.org/10.1002/ejic.200800939.

    Article  CAS  Google Scholar 

  7. Glück J, Klaptke TM, Sabatini JJ. Flare or strobe: a tunable chlorine-free pyrotechnic system based on lithium nitrate. Chem Commun. 2018;54:821–4.

    Article  Google Scholar 

  8. Kettner MA, Klapoetke TM, Mueller TG, Suceska M. Contributions to the chemistry of N-methylnitramine: crystal structure, synthesis of nitrogen-rich salts, and reactions towards 2-nitro-2-azapropyl derivatives. Eur J Inorg Chem. 2014;28(28):4756–71. https://doi.org/10.1002/ejic.201402441.

    Article  CAS  Google Scholar 

  9. Glück J, Klapçtke TM, Rusan M, Stierstorfer J. Green colorants based on energetic azole borates. Eur J Inorg Chem. 2015;20(48):15947–60.

    Google Scholar 

  10. Dufter A, Klaptke TM, Rusan M, Stierstorfer J. The lithium salts of bis(azolyl)borates as strontium- and chlorine-free red pyrotechnic colorants. Z Anorg Allg Chem. 2019;646:580–5.

    Article  Google Scholar 

  11. Chen X, Guo Z, Zhang C, Gao R, Zhang J, Ma H. Constructing a 3D-layered energetic metal-organic framework with the strong stacking interactions of hydrogen-bridged rings: the way to an insensitive high energy complex. CrystEngComm. 2020;22(33):5436–46. https://doi.org/10.1039/d0ce00643b.

    Article  CAS  Google Scholar 

  12. He P, Zhang JG, Wu L, Wu JT, Zhang TL. Sodium 1,1ʹ-dinitramino-5,5ʹ-bistetrazolate: a 3D metal-organic framework as green energetic material with good performance and thermo stability. Inorg Chim Acta. 2017;455:152–7. https://doi.org/10.1016/j.ica.2016.10.031.

    Article  CAS  Google Scholar 

  13. Li X, Han J, Zhang S, Zhai L, Wang B, Yang Q, et al. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide. J Solid State Chem. 2017;253:375–81. https://doi.org/10.1016/j.jssc.2017.06.027.

    Article  CAS  Google Scholar 

  14. Chen X, Wang S, Chen Y, Hu Y, Zhang C, Guo Z, et al. Alkaline earth metal salts of 3,6-bis-nitroguanyl-1,2,4,5-tetrazine: promising perchlorate-free environmentally friendly pyrotechnic components. Appl Organomet Chem. 2022. https://doi.org/10.1002/aoc.6497.

    Article  Google Scholar 

  15. Glueck J, Gospodinov I, Klapoetke TM, Stierstorfer J. Metal salts of 3,3ʹ-diamino-4,4ʹ-dinitramino-5,5ʹ-bi-1,2,4-triazole in pyrotechnic compositions. Z Anorg Allg Chem. 2019;645(3):370–6. https://doi.org/10.1002/zaac.201800179.

    Article  CAS  Google Scholar 

  16. Wang T, Zhou J, Zhang Q, Zhang L, Zhu S, Li Y. Novel 3D cesium(i)-based EMOFs of nitrogen-rich triazole derivatives as “green” orange-light pyrotechnics. New J Chem. 2020;44(4):1278–84. https://doi.org/10.1039/c9nj03577j.

    Article  CAS  Google Scholar 

  17. Fischer N, Klapoetke TM, Marchner S, Rusan M, Scheutzow S, Stierstorfer J. A Selection of alkali and alkaline earth metal salts of 5,5ʹ-bis(1-hydroxytetrazole) in pyrotechnic compositions. Propellants Explos Pyrotech. 2013;38(3):448–59. https://doi.org/10.1002/prep.201200177.

    Article  CAS  Google Scholar 

  18. Cao W, Wang T, Mei H, Dong W, Tariq QN, Yin L, et al. Access to green pyrotechnic compositions via constructing coordination polymers: a new approach to the application of 3,4-dinitropyrazole. ACS Appl Mater Interfaces. 2022;14(28):32084–95. https://doi.org/10.1021/acsami.2c07758.

    Article  CAS  PubMed  Google Scholar 

  19. Bu R, Jiao F, Liu G, Zhao J, Zhang C. Categorizing and understanding energetic crystals. Cryst Growth Des. 2021;21(1):3–15. https://doi.org/10.1021/acs.cgd.0c01300.

    Article  CAS  Google Scholar 

  20. Yang ZL, Qin J, Yang JQ, Sindiskii VP, Zhang JG. Synthesis and investigation of alkaline energetic coordination polymers based on 1,2,3-triazole-4,5-dicarboxylic acid for green component of pyrotechnics. CrystEngComm. 2020;22(22):3768–76. https://doi.org/10.1039/d0ce00317d.

    Article  CAS  Google Scholar 

  21. Wang Y, Yang X, Hu J, Li H, Li Z, Zhang T. Insensitive energetic compounds: alkaline earth metal salts of 5,5ʹ-dinitramino-3,3ʹ-methylene-1H-1,2,4-bistriazolate. New J Chem. 2020;44(44):19054–60. https://doi.org/10.1039/d0nj03773g.

    Article  CAS  Google Scholar 

  22. Xu Y, Liu W, Li D, Chen H, Lu M. In situ synthesized 3D metal-organic frameworks (MOFs) constructed from transition metal cations and tetrazole derivatives: a family of insensitive energetic materials. Dalton Trans. 2017;46(33):11046–52. https://doi.org/10.1039/c7dt02582c.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang C, Chen X, Bai Y, Guo ZQ, Song JR, Ma HX. 6((2Htetrazol5yl)amino)1,2,4,5tetrazin3(2H)one: highnitrogen insensitive energetic compound stabilized by πstacking and hydrogenbonding interactions. Chin J Energ Mater. 2020;28(3):182–9.

    CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–9.

    Article  CAS  Google Scholar 

  25. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–92.

    Article  PubMed  Google Scholar 

  26. Liu X, Su Z, Ji W, Chen S, Wei Q, **e G, et al. Structure, physicochemical properties, and density functional theory calculation of high-energy-density materials constructed with intermolecular interaction: nitro group charge determines sensitivity. J Phys Chem C. 2014;118(41):23487–98. https://doi.org/10.1021/jp5062418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Science and Technology Innovation Team of Shaanxi Province (No. 2022TD-33), the Shaanxi Innovation Capability Support Program-Young Science and Technology Star Project (2023KJXX-036), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JZ-43), and the Key Laboratory of Defense Science and Technology (No. 2022-JCJQ-LB-037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ngqiang Lü or Haixia Ma.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Guo, Y., **ao, L. et al. 4-(1H-tetrazole-5-yl-amino)-1,2,4,5-tetrazin-1-one (TATzO) metal salts: promising pyrotechnic agent. J Therm Anal Calorim 149, 2697–2706 (2024). https://doi.org/10.1007/s10973-023-12850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12850-6

Keywords

Navigation