Log in

A comparative numerical analysis of concentric and hairpin heat exchanger for efficient energy storage using phase-change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of latent heat energy storage can minimize the consumption of conventional fuels. The application of latent heat energy storage using phase-change materials (PCMs) can contribute to domestic energy demand without polluting the environment. This study is planned to provide more information to design latent heat energy storage systems for industrial and domestic applications. The study includes the comparison of the latent heat storage or melting of PCM in concentric and hairpin heat exchangers. The study also includes the effect of PCM type on the melting process. The numerical results obtained show an increase in heat transfer which is achieved by decreasing the diameter and increasing the length of the high-temperature fluid (HTF). The rate and the amount of energy stored are also found to be improved. The melting time is inversely proportional to thermal diffusivity. In this study, the thermal diffusivity is the highest for RT 50 (1.2 × 10–7 m2 s−1); hence, the melting time for RT 50 is the lowest (86 min for Stefan number 0.35). Also, the melting time is directly proportional to viscosity. For RT 35, the viscosity is the highest (0.023 kg m−1. sec), and the rate of melting is the lowest (146 min for Stefan number 0.35). The evaluated energy storage capacity of hairpin and concentric heat exchangers is 455 and 140 W, respectively. Hence, the storage capacity is 3.25 times higher for the hairpin heat exchanger compared to the concentric heat exchanger. On the other hand, phase-change materials with a sizeable latent heat value can store more energy but the rate of energy stored depends on the temperature difference between high-temperature fluid and the initial temperature of phase-change materials. Therefore, an effective energy storage system can be proposed through numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

PCM:

Phase-change material

HEX:

Heat exchanger

LHTES:

Latent heat thermal energy storage

HTF:

High-temperature fluid

C mushy :

Mushy zone constant

SIMPLE:

Semi-implicit method for pressure-linked equations

H :

Enthalpy (kJ kg1)

β :

Thermal expansion coefficient (1/K)

ρ :

Density (kg m3)

γ :

Liquid fraction

v :

Velocity component in y direction (m s1)

T s :

Solidus temperature (K)

T l :

Liquids temperature (K)

T m :

Mean melting temperature (K)

T ref :

Reference temperature (K)

T :

Temperature (K)

\({\Delta T}_{\mathrm{Dr}}\) :

Temperature difference between HTF at inlet and initial temperature of PCM

S :

Momentum source (kg m2 s2)

k :

Thermal conductivity (W m1 K)

L :

Latent heat of solid/liquid phase-change (kJ kg1)

\({\mathrm{L}}_{c}\) :

Characteristic length of HEX

g :

Gravitational force (m s2)

St:

Stefan number

Grm:

Modified Grashof number

References

  1. Chastas P, Theodosiou T, Kontoleon KJ, Bikas D. Normalising and assessing carbon emissions in the building sector: a review on the embodied CO2 emissions of residential buildings. Build Environ. 2018;130:212–26. https://doi.org/10.1016/j.buildenv.2017.12.032.

    Article  Google Scholar 

  2. Alazwari MA, Abu-Hamdeh NH, Khoshaim A, Almitani KH, Karimipour A. Using phase change material as an energy-efficient technique to reduce energy demand in air handling unit integrated with absorption chiller and recovery unit—applicable for high solar-irradiance regions. J Energy Storage. 2021;42:103080. https://doi.org/10.1016/j.est.2021.103080.

    Article  Google Scholar 

  3. Sohani A, et al. Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria. J Taiwan Inst Chem Eng. 2021;124:351–8. https://doi.org/10.1016/j.jtice.2021.02.027.

    Article  CAS  Google Scholar 

  4. Farouk N, El-Rahman MA, Sharifpur M, Guo W. Assessment of CO2 emissions associated with HVAC system in buildings equipped with phase change materials. J Build Eng. 2022;51:104236. https://doi.org/10.1016/j.jobe.2022.104236.

    Article  Google Scholar 

  5. Ürge-Vorsatz D, Cabeza LF, Serrano S, Barreneche C, Petrichenko K. Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev. 2015;41:85–98. https://doi.org/10.1016/j.rser.2014.08.039.

    Article  Google Scholar 

  6. Isaac M, van Vuuren DP. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy. 2009;37(2):507–21. https://doi.org/10.1016/j.enpol.2008.09.051.

    Article  Google Scholar 

  7. Akhtari MR, Shayegh I, Karimi N. Techno-economic assessment and optimization of a hybrid renewable earth—air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations. Renew Energy. 2020;148:839–51. https://doi.org/10.1016/j.renene.2019.10.169.

    Article  Google Scholar 

  8. Zhao J, Li S. Life cycle cost assessment and multi-criteria decision analysis of environment-friendly building insulation materials—a review. Energy Build. 2022;254:111582. https://doi.org/10.1016/j.enbuild.2021.111582.

    Article  Google Scholar 

  9. Karami R, Kamkari B. Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems. Energy Convers Manag. 2020;210:112679. https://doi.org/10.1016/j.enconman.2020.112679.

    Article  Google Scholar 

  10. Qu Y, Zhou D, Xue F, Cui L. Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy Build. 2021;241:110966. https://doi.org/10.1016/j.enbuild.2021.110966.

    Article  Google Scholar 

  11. Barghi Jahromi MS, Kalantar V, Samimi Akhijahani H, Kargarsharifabad H. Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. J Energy Storage. 2022;51:104434. https://doi.org/10.1016/j.est.2022.104434.

    Article  Google Scholar 

  12. Huang Y, Yang S, Aadmi M, Wang Y, Karkri M, Zhang Z. Numerical analysis on phase change progress and thermal performance of different roofs integrated with phase change material (PCM) in Moroccan semi-arid and Mediterranean climates. Build Simul. 2023;16(1):69–85. https://doi.org/10.1007/s12273-022-0922-z.

    Article  Google Scholar 

  13. Shabgard H, Song L, Zhu W. Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage. Energy Convers Manag. 2018;175:121–31. https://doi.org/10.1016/j.enconman.2018.08.105.

    Article  Google Scholar 

  14. Cao X, Zhang N, Yuan Y, Luo X. Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery. Renew Energy. 2020;157:616–25. https://doi.org/10.1016/j.renene.2020.05.059.

    Article  Google Scholar 

  15. Solomon J, Kugarajah V, Ganesan P, Dharmalingam S. Enhancing power generation by maintaining operating temperature using phase change material for microbial fuel cell application. J Environ Chem Eng. 2022;10(1):107057. https://doi.org/10.1016/j.jece.2021.107057.

    Article  CAS  Google Scholar 

  16. Ghosh D, Ghose J, Kumari P, Paul S, Datta P. Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect. J Energy Storage. 2022. https://doi.org/10.1016/j.est.2022.105179.

    Article  Google Scholar 

  17. Sathishkumar A, Cheralathan M. Influence of thermal transport properties of NEPCM for cool thermal energy storage system. J Therm Anal Calorim. 2022;147(1):367–78. https://doi.org/10.1007/s10973-020-10339-0.

    Article  CAS  Google Scholar 

  18. Wang Y, Liu Z, Zhang T, Zhang Z. Preparation and characterization of graphene oxide-grafted hexadecanol composite phase-change material for thermal energy storage. Energy Technol. 2017;5(11):2005–14. https://doi.org/10.1002/ente.201700148.

    Article  CAS  Google Scholar 

  19. **e S, et al. Thermally stable phase change material with high latent heat and low cost based on an adipic acid/boric acid binary eutectic system. Energy Technol. 2017;5(8):1322–7. https://doi.org/10.1002/ente.201600650.

    Article  CAS  Google Scholar 

  20. Ma G, et al. Preparation and properties of stearic acid-acetanilide eutectic mixture/expanded graphite composite phase-change material for thermal energy storage. Energy Technol. 2018;6(1):153–60. https://doi.org/10.1002/ente.201700352.

    Article  CAS  Google Scholar 

  21. Atinafu DG, Ok YS, Kua HW, Kim S. Thermal properties of composite organic phase change materials (PCMs): a critical review on their engineering chemistry. Appl Therm Eng. 2020;181:115960. https://doi.org/10.1016/j.applthermaleng.2020.115960.

    Article  CAS  Google Scholar 

  22. Ashagre TB, Rakshit D. Study on flow and heat transfer characteristics of encapsulated phase change material (EPCM) slurry in double-pipe heat exchanger. J Energy Storage. 2022;46:103931. https://doi.org/10.1016/j.est.2021.103931.

    Article  Google Scholar 

  23. Chibani A, et al. A strategy for enhancing heat transfer in phase change material-based latent thermal energy storage unit via nano-oxides addition: a study applied to a shell-and-tube heat exchanger. J Environ Chem Eng. 2021;9(6):106744. https://doi.org/10.1016/j.jece.2021.106744.

    Article  CAS  Google Scholar 

  24. Huang X, Zhu C, Lin Y, Fang G. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Appl Therm Eng. 2019;147:841–55. https://doi.org/10.1016/j.applthermaleng.2018.11.007.

    Article  Google Scholar 

  25. Liu H, Wang X, Wu D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energy Fuels. 2019;3(5):1091–149. https://doi.org/10.1039/C9SE00019D.

    Article  CAS  Google Scholar 

  26. Tofani K, Tiari S. Nano-enhanced phase change materials in latent heat thermal energy storage systems: a review. Energies. 2021. https://doi.org/10.3390/en14133821.

    Article  Google Scholar 

  27. Arshad A, Jabbal M, Yan Y, Darkwa J. The micro-/nano-PCMs for thermal energy storage systems: a state of art review. Int J Energy Res. 2019;43(11):5572–620. https://doi.org/10.1002/er.4550.

    Article  CAS  Google Scholar 

  28. Jouhara H, Żabnieńska-Góra A, Khordehgah N, Ahmad D, Lipinski T. Latent thermal energy storage technologies and applications: a review. Int J Thermofluids. 2020;5–6:100039. https://doi.org/10.1016/j.ijft.2020.100039.

    Article  CAS  Google Scholar 

  29. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf. 2018;127:838–56. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.

    Article  CAS  Google Scholar 

  30. Fallah Najafabadi M, Talebi Rostami H, Farhadi M. Analysis of a twisted double-pipe heat exchanger with lobed cross-section as a novel heat storage unit for solar collectors using phase-change material. Int Commun Heat Mass Transf. 2021;128:105598. https://doi.org/10.1016/j.icheatmasstransfer.2021.105598.

    Article  Google Scholar 

  31. Ouzzane M, Bady M. Investigation of an innovative Canadian well system combined with a frozen water/PCM heat exchanger for air-cooling in hot climate. Appl Therm Eng. 2022;213:118737. https://doi.org/10.1016/j.applthermaleng.2022.118737.

    Article  CAS  Google Scholar 

  32. Shinde TU, Dalvi VH, Mathpati CS, Shenoy N, Panse SV, Joshi JB. Heat transfer investigation of PCM pipe bank thermal storage for space heating application. Chem Eng Process Process Intensif. 2022. https://doi.org/10.1016/j.cep.2022.108791.

    Article  Google Scholar 

  33. Kadivar MR, Moghimi MA, Sapin P, Markides CN. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. J Energy Storage. 2019;26:101030. https://doi.org/10.1016/j.est.2019.101030.

    Article  Google Scholar 

  34. Li H, et al. A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger. Powder Technol. 2022;397:117037. https://doi.org/10.1016/j.powtec.2021.117037.

    Article  CAS  Google Scholar 

  35. Alaraji A, Alhussein H, Asadi Z, Ganji DD. Investigation of heat energy storage of RT26 organic materials in circular and elliptical heat exchangers in melting and solidification process. Case Stud Therm Eng. 2021;28:101432. https://doi.org/10.1016/j.csite.2021.101432.

    Article  Google Scholar 

  36. Soltani H, Soltani M, Karimi H, Nathwani J. Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms. Int J Heat Mass Transf. 2021;179:121667. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121667.

    Article  Google Scholar 

  37. Gholaminia V, Rahimi M, Ghaebi H. Heat storage process analysis in a heat exchanger containing phase change materials. J Energy Storage. 2020;32:101875. https://doi.org/10.1016/j.est.2020.101875.

    Article  Google Scholar 

  38. Shahsavar A, Ali HM, Mahani RB, Talebizadehsardari P. Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system. J Therm Anal Calorim. 2020;141(5):1785–99. https://doi.org/10.1007/s10973-020-09864-9.

    Article  CAS  Google Scholar 

  39. Moon H, Miljkovic N, King WP. High power density thermal energy storage using additively manufactured heat exchangers and phase change material. Int J Heat Mass Transf. 2020;153:119591. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119591.

    Article  CAS  Google Scholar 

  40. Aljabr A, Chiasson A. Numerical modeling of the effects of the radial and axial location of added micro-encapsulated phase change materials in vertical borehole heat exchangers. Geothermics. 2023;110:102684. https://doi.org/10.1016/j.geothermics.2023.102684.

    Article  Google Scholar 

  41. Chopra K, et al. Thermal and chemical reliability of paraffin wax and its impact on thermal performance and economic analysis of solar water heater. Energy Sustain Dev. 2023;73:39–53. https://doi.org/10.1016/j.esd.2023.01.004.

    Article  Google Scholar 

  42. Choure BK, Alam T, Kumar R. A review on heat transfer enhancement techniques for PCM based thermal energy storage system. J Energy Storage. 2023;72:108161. https://doi.org/10.1016/j.est.2023.108161.

    Article  Google Scholar 

  43. Zhu Y, Yu Y, Qiu Y. Effect of fins with unequal length on the performance of cylindrical latent heat storage system. J Energy Storage. 2021;35:102224. https://doi.org/10.1016/j.est.2020.102224.

    Article  Google Scholar 

  44. Nie C, Liu J, Deng S. Effect of geometric parameter and nanoparticles on PCM melting in a vertical shell-tube system. Appl Therm Eng. 2021;184:116290. https://doi.org/10.1016/j.applthermaleng.2020.116290.

    Article  Google Scholar 

  45. Mozafari M, Lee A, Cheng S. A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger. Int J Heat Mass Transf. 2022;186:122420. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122420.

    Article  Google Scholar 

  46. Gorzin M, Hosseini MJ, Rahimi M, Bahrampoury R. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. J Energy Storage. 2019;22:88–97. https://doi.org/10.1016/j.est.2018.12.023.

    Article  Google Scholar 

  47. NematpourKeshteli A, Iasiello M, Langella G, Bianco N. Enhancing PCMs thermal conductivity: a comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers. Appl Therm Eng. 2022;212:118623. https://doi.org/10.1016/j.applthermaleng.2022.118623.

    Article  CAS  Google Scholar 

  48. Ghosh D, Guha C, Ghose J. Numerical investigation of paraffin wax solidification in spherical and rectangular cavity. Heat Mass Transf und Stoffuebertragung. 2019;55(12):3547–59. https://doi.org/10.1007/s00231-019-02680-4.

    Article  CAS  Google Scholar 

  49. Ghosh D, Guha C. Numerical and experimental investigation of paraffin wax melting in spherical cavity. Heat Mass Transf und Stoffuebertragung. 2019;55(5):1427–37. https://doi.org/10.1007/s00231-018-2522-0.

    Article  CAS  Google Scholar 

  50. Ghosh D, Guha C. Numerical simulation of paraffin wax melting in a rectangular cavity using CFD. Indian Chem Eng. 2020;62(3):314–28. https://doi.org/10.1080/00194506.2019.1689183.

    Article  CAS  Google Scholar 

  51. Ghosh D, Kumar P, Sharma S, Guha C, Ghose J. Numerical investigation on latent heat thermal energy storage in a phase change material using a heat exchanger. Heat Transf. 2021;50(5):4289–308. https://doi.org/10.1002/htj.22075.

    Article  Google Scholar 

  52. Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf. 1988;13(3):297–318. https://doi.org/10.1080/10407788808913615.

    Article  Google Scholar 

  53. Rahimi M, Ranjbar AA, Ganji DD, Sedighi K, Hosseini MJ, Bahrampoury R. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int Commun Heat Mass Transf. 2014;53:109–15. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.025.

    Article  CAS  Google Scholar 

  54. Gorzin M, Hosseini MJ, Ranjbar AA, Bahrampoury R. Investigation of PCM charging for the energy saving of domestic hot water system. Appl Therm Eng. 2018;137:659–68. https://doi.org/10.1016/j.applthermaleng.2018.04.016.

    Article  CAS  Google Scholar 

  55. Sathishkumar A, Cheralathan M. “Influence of functionalized graphene nanoplatelets on the phase transition performance of DI water-based NEPCMs for cool thermal storage systems”, Energy Sources. Part A Recover Util Environ Eff. 2023;45(1):1187–203. https://doi.org/10.1080/15567036.2021.2007312.

    Article  CAS  Google Scholar 

  56. Peng B, Qiu M, Xu N, Zhou Y, Sheng W, Su F. Optimum orthogonally structured fins in charging enhancement of phase change materials (PCMs): PCMs’ thermophysical properties effects. Int J Therm Sci. 2023;184:108005. https://doi.org/10.1016/j.ijthermalsci.2022.108005.

    Article  CAS  Google Scholar 

  57. Peng B, et al. Impacts of the thermophysical properties of the phase change materials (PCMs) on the melting performance and optimum dimensions of fins. Comput Chem Eng. 2022;165:107929. https://doi.org/10.1016/j.compchemeng.2022.107929.

    Article  CAS  Google Scholar 

  58. Narasimha Siva Teja P, Gugulothu SK, Dinesh Sankar Reddy P, Deepanraj B, Syam Sundar L. Computational investigation of the influencing parameters on the melting of phase change material in a square enclosure with built in fin and Al2O3 nanoparticles. Appl Therm Eng. 2023;232:120942. https://doi.org/10.1016/j.applthermaleng.2023.120942.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Science and Engineering Research Board (SERB) of India (file No. SPG/2021/004530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasree Ghosh.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Ghosh, D. A comparative numerical analysis of concentric and hairpin heat exchanger for efficient energy storage using phase-change material. J Therm Anal Calorim 148, 12211–12224 (2023). https://doi.org/10.1007/s10973-023-12501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12501-w

Keywords

Navigation