Log in

In situ crosslinking of poly(vinyl alcohol)/graphene oxide Nano-composite hydrogel: intercalation structure and adsorption mechanism for advanced Pb(II) removal

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Based on the industrialized graphene oxide (GO) product, poly(vinyl alcohol) (PVA)/GO nano-composite hydrogels were prepared through in situ crosslinking by incorporation of N-[(trimethoxysilyl)propyl] ethylenediamine-triacetic acid sodium (CSA) as a compatibilizer. Introduction of CSA led to more efficient grafting of PVA molecules onto GO surface with increasing average layer thickness through covalent and hydrogen bonding interaction, while GO was exfoliated and uniformly distributed in PVA matrix. Addition of appropriate content of GO can improve the storage modulus and the effective crosslinking density (υe) of the composite hydrogel, and the network structure with GO as crosslinking point formed, resulting in the remarkable increase of the hydraulic impact resistance, mechanical strength and toughness of the hydrogel. Pb2+ adsorption capacity of the hydrogel increased with GO content, while the adsorption belonged to the second-order kinetic model and fitted Langmuir adsorption isotherm model, indicating the homogeneous nature of monolayer chemical adsorption of Pb2+. A relatively good reusability of the composite hydrogel beads for Pb2+ removal can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  2. Celik A, Demirba A (2005) Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pul** wastes. Energy Sources 27:1167–1177

    Article  CAS  Google Scholar 

  3. Chan WC (1994) Removal of heavy metal ions with water-insoluble amphoteric sodium tertiary amine sulfonate starches. J Polym Res 1:221–226

    Article  Google Scholar 

  4. Bereket G, Aroğuz AZ, Ozel MZ (1997) Removal of Pb (II), Cd (II), Cu (II), and Zn (II) from aqueous solutions by adsorption on bentonite. J. Colloid Interf. Sci. 187:338–343

    Article  CAS  Google Scholar 

  5. Gupta SS, Bhattacharyya KG (2005) Interaction of metal ions with clays: I. A case study with Pb (II). Appl. Clay Sci 30:199–208

    Article  CAS  Google Scholar 

  6. Tunali S, Akar T, Özcan AS (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47:105–112

    Article  CAS  Google Scholar 

  7. Nadeem M, Nadeem R, Nadeem HU (2005) Accumulation of lead and cadmium in different organs of chicken. Pak J Sci Res 57:71

    CAS  Google Scholar 

  8. Zeledón-Toruño Z, Lao-Luque C, Solé-Sardans M (2005) Nickel and copper removal from aqueous solution by an immature coal (leonardite): effect of pH, contact time and water hardness. J Chem Technol Biotechnol 80:649–656

    Article  CAS  Google Scholar 

  9. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J. Colloid Interf. Sci. 280:309–314

    Article  CAS  Google Scholar 

  10. Apak R, Güçlü K, Turgut MH (1998) Modeling of copper (II), cadmium (II), and lead (II) adsorption on red mud. J. Colloid Interf. Sci. 203:122–130

    Article  CAS  Google Scholar 

  11. Bulut Y, Zeki TEZ (2007) Removal of heavy metals from aqueous solution by sawdust adsorption. J Environ SCI-China 19:160–166

    Article  CAS  PubMed  Google Scholar 

  12. Hossain MA, Ngo HH, Guo WS (2012) Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models. Bioresour Technol 113:97–101

    Article  CAS  PubMed  Google Scholar 

  13. Parajuli D, Inoue K, Ohto K (2005) Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel. React Funct Polym 62:129–139

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  15. Sham AY, Notley SM (2013) A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter 9:6645–6653

    Article  CAS  Google Scholar 

  16. Shamsi R, Koosha M, Mahyari M (2016) Improving the mechanical, thermal and electrical properties of polyurethane- graphene oxide nanocomposites synthesized by in-situ polymerization of ester-based polyol with hexamethylene diisocyanate. J Polym Res 23:262–272

    Article  CAS  Google Scholar 

  17. Chen J, Li C, Shi G (2013) Graphene materials for electrochemical capacitors. The J Phys Chem Lett 4:1244–1253

    Article  CAS  PubMed  Google Scholar 

  18. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Zhou H, Wu W (2015) Studies of heavy metal ion adsorption on chitosan/Sulfydryl-functionalized graphene oxide composites. J Colloid Interf Sci 448:389–397

    Article  CAS  Google Scholar 

  20. Jiao C, **ong J, Tao J (2016) Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. J Biol Macromol 83:133–141

    Article  CAS  Google Scholar 

  21. Ji Y, Ma J, Liang B (2005) In situ polymerization and in situ compatibilization of polymer blends of poly (2, 6-dimethyl-1, 4-phenylene oxide) and polyamide 6. Mater Lett 59:1997–2000

    Article  CAS  Google Scholar 

  22. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749

    Article  CAS  Google Scholar 

  23. Ferrari AC, Meyer JC, Scardaci V (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Ren L, Wang R, Zhang C, Yang Y, Liu T (2011) Water dispersible graphene noncovalently functionalized with tryptophan and its poly (vinyl alcohol) nanocomposite. Compos Part B-Eng 42:2130–2135

    Article  CAS  Google Scholar 

  25. Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascon JMD (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968

    Article  CAS  PubMed  Google Scholar 

  26. Huang T, Liu P, Lu RG, Huang ZY, Chen HM, Li TS (2012) Modification of polyetherimide by phenylethynyl terminated agent for improved tribological, macro-and micro-mechanical properties. Wear 292:25–32

    Article  CAS  Google Scholar 

  27. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48:3834–3839

    Article  CAS  Google Scholar 

  28. Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21:9271–9278

    Article  CAS  Google Scholar 

  29. Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Inter 4:2699–2708

    Article  CAS  Google Scholar 

  30. Meng Y, Ye L (2017) Synthesis and swelling property of the starch-based macroporous superabsorbent. J Appl Polym Sci 134:44855–44864

    Google Scholar 

  31. Meng Y, Ye L (2017) Synthesis and swelling property of superabsorbent starch grafted with acrylic acid/2-acrylamido-2-methyl-1-propanesulfonic acid. J Sci Food Agric 97:3831–3840

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Hui B, Ye L (2016) Preparation and structure of poly (vinyl alcohol)/Polyacrylate elastomer composite hydrogels and their application in wastewater treatment by immobilizing with microorganisms. Ind Eng Chem Res 55:9934–9943

    Article  CAS  Google Scholar 

  33. Huang F, Zheng Y, Yang Y (2007) Study on macromolecular metal complexes: synthesis, characterization, and fluorescence properties of stoichiometric complexes for rare earth coordinated with poly (acrylic acid). J Appl Polym Sci 103:351–357

    Article  CAS  Google Scholar 

  34. Al-qudah YHF, Mahmoud GA, Khalek MAA (2014) Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. J Radiat Res Appl Sci 7:135–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by State Key Laboratory of Polymer Materials Engineering of China(Grant No. sklpme2016-2-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Zhang, G. & Ye, L. In situ crosslinking of poly(vinyl alcohol)/graphene oxide Nano-composite hydrogel: intercalation structure and adsorption mechanism for advanced Pb(II) removal. J Polym Res 25, 168 (2018). https://doi.org/10.1007/s10965-018-1569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1569-4

Keywords

Navigation