Log in

Electronic, Structural, Thermodynamic, and Mechanical Stabilities, Half-Metallicity, and Thermoelectric Performances of CE-Based Half-Heusler

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The method of linearized full-potential augmented plane waves based on density functional theory (DFT) is employed to investigate the structural, elastic, magnetic electronic, and thermoelectric properties of the cerium-based half-Heusler alloy FeCeSi. The exchange correlation functional is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Tran-Blaha-modified Beck-Johnson (TB-mBJ) as implemented in the Wien2k package. According to our results, we have discovered that the material studied is mechanically stable, which means that this compound can be synthesized experimentally. Furthermore, FeCeSi exhibits a half-metallic behavior obeying the Slater-Pauling rule with an integer magnetic moment of 2 μB. The electronic band structures and density of states confirm the half-metallic character with an indirect band gap equals to 0.51 eV and 0.59 eV for GGA-PBE and TB-mBJ approximation, respectively. For the study of the thermoelectric parameters, such as Seebeck coefficient (S), electrical conductivity (σ), thermal conductivity (κ), and figure of merit (ZT), the Boltzmann transport equations within the framework of DFT have been used. Significant values for the figure of merit and Seebeck coefficient indicate promising candidate for useful thermoelectric applications for FeCeSi alloy. So far, no experimental or theoretical investigations have been carried out on the half-Heusler alloy FeCeSi. Accordingly, our theoretical results concerning structural, elastic, electronic, magnetic, and thermoelectric properties will probably be confirmed by experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Heusler, F.: Verh. Deutsche PhysikalischeGesellschaft 5, 219 (1903)

    Google Scholar 

  2. Nishihara, H., Okui, N., Okubo, A., Kanomata, T., Umetsu, R.Y., Kainuma, R., Sakon, T.: Temperature dependence of a resonance frequency of 59Co NMR in a ferromagnetic Heusler alloy Co2FeSi. J. Alloys Comp. 551, 208 (2013)

    Article  Google Scholar 

  3. de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  4. de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 54, 1377 (1986)

    Article  ADS  Google Scholar 

  5. Dahmane, F., Mogulkoc, Y., Doumi, B., Tadjer, A., Khenata, R., Omran, S.B., Rai, D.P., Murtaza, G., varshney, D.: Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: a first principle study. J. Magn. Magn. Mater. 407, 167 (2016)

    Article  ADS  Google Scholar 

  6. Wernick, J.H., Hull, G.W., Bernardini, J.E., Waszczak, J.V.: Superconductivity in ternary Heusler intermetallic compounds. Mater. Lett. 2, 90 (1983)

    Article  ADS  Google Scholar 

  7. Wiendlocha, B., Winiarski, M.J., Muras, M., Zvoriste-Walters, C., Griveau, J.-C., Heathman, S., Gazda, M., Klimczuk, T.: Pressure effects on the superconductivity of the HfPd2AlHeusler compound: experimental and theoretical study. Phys. Rev. B 91, 024509 (2015)

    Article  ADS  Google Scholar 

  8. SaadiBerri,: The electronic structure and spin polarization of Co2Mn0.75(Gd, Eu)0.25Z (Z=Si, Ge, Ga, Al) quaternary Heusler alloys. J. Magnet. Magnet. Mater. 401, 667 (2016)

    Article  Google Scholar 

  9. Graf, T., Klaer, P., Barth, J., Balke, B., Elmers, H.-J., Felser, C.: Phase separation in the quaternary Heusler compound CoTi(1–x)MnxSb – a reduction in the thermal conductivity for thermoelectric applications. ScriptaMaterialia 63, 1216 (2010)

    Google Scholar 

  10. Toual, Y., Mouchou, S., Azouaoui, A., Harbi, A., Moutaabbid, M., Hourmatallah, A., Bouslykhane, K., Benzakour, N.: Mater. Chem. Phys. 307, 128115 (2023)

    Article  Google Scholar 

  11. Toual, Y., Mouchou, S., Azouaoui, A., Hourmatallah, A., Masrour, R., Rezzouk, A., Bouslykhane, K., Benzakour, N.: Physica B Condens. Matter 670, 415344 (2023)

    Article  Google Scholar 

  12. Toual, Y., et al.: First-principles calculations to investigate structural, electronic, magnetic, mechanical and thermodynamic properties of Half-Heusler alloy CoMnTe: Using GGA and GGA+ U methods. Mater. Chem. Phys. 307, 128115 (2023)

    Article  Google Scholar 

  13. Toual, Y., Mouchou, S., Rani, U., Azouaoui, A., Hourmatallah, A., Masrour, R., Rezzouk, A., Bouslykhane, K., Benzakour, N.: Mater. Today Commun 38, 108064 (2024)

    Article  Google Scholar 

  14. Nada, T.M., Khalifeh, J.M., Mousa, A.A., Juwhari, H.K., Hamad, B.A.: Physica B Condens. Matter. 430, 58–63 (2013)

    Article  ADS  Google Scholar 

  15. Fu, C., Zhu, T., Pei, Y., **e, H., Wang, H., Snyder, G.J., Liu, Y., Liu, Y., Zhao, X.: High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds. J. Adv. Energy Mater. 4, 1400600 (2014)

    Article  Google Scholar 

  16. Zhu, H., et al.: Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 10(1), 270 (2019)

    Article  ADS  Google Scholar 

  17. El-Khouly, A., Novitskii, A., Adam, A.M., Sedegov, A., Kalugina, A., Pankratova, D., Karpenkov, D., Khovaylo, V.: Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys. J. Alloys Compd. 820, 153413 (2020)

    Article  Google Scholar 

  18. Chauhan, N.S., Miyazaki, Y.: Iron-based semiconducting half-Heusler alloys for thermoelectric applications. ChemNanoMat 9(1), e202200403 (2023)

    Article  Google Scholar 

  19. Nenuwe, N.O., Omugbe, E.: Electronic properties of half-Heusler compounds XCrSb (X = Fe, Ru, Os): Potential applications as spintronics and high-performance thermoelectric materials. Curr. Appl. Phys. 49, 70–77 (2023)

    Article  ADS  Google Scholar 

  20. Toual, Y., Mouchou, S., Azouaoui, A., Harbi, A., Moutaabbid, M., Hourmatallah, A., Benzakour, N., Bouslykhane, K.: J. Supercond. Nov. Magn. 30, 1403–1411 (2023)

    Article  Google Scholar 

  21. Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011)

    Article  ADS  Google Scholar 

  22. Shen, Q., Chen, L., Goto, T., Hirai, T., Yang, J., Meisner, G.P., Uher, C.: Appl. Phys. Lett. 79, 4165 (2001)

    Article  ADS  Google Scholar 

  23. Mahmoud, N.T., Mousa, A.A., Shaheen, A.A.: Effect of do** titanium ions on semi-conducting behavior, photovoltaic, and thermoelectric perovskite-type oxides VSc1−xTixO3: Ab-inito study. Int. J. Energy Res. 46(9), 12184–12206 (2022)

    Article  Google Scholar 

  24. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  25. Kohn, W., Luttinger, J.M.: New mechanism for superconductivity. Phys. Rev. Lett. 15(12), 524 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  26. Slater, J.C.: Phys. Rev. 51, 846 (1937)

    Article  ADS  Google Scholar 

  27. Singh, D.: Phys. Rev. B 43, 6388 (1991)

    Article  ADS  Google Scholar 

  28. Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114(1), 15–20 (2000)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  30. Rogl, G., Grytsiv, A., Gürth, M., Tavassoli, A., Ebner, C., Wünschek, A., Puchegger, S., Soprunyuk, V., Schranz, W., Bauer, E., Müller, H., Zehetbauer, M., Rogl, P.: Acta Mater. 107, 178 (2016)

    Article  ADS  Google Scholar 

  31. Madsen, G.K., Singh, D.J.: Boltztrap: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67 (2006)

    Article  ADS  Google Scholar 

  32. Murnaghan, F.D.: Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944)

    Article  ADS  Google Scholar 

  33. Nada, T.M., Mousa, A.A., Juwhari, H.H., Khalifeh, J.M., Abu-Jafar, M.S.: Int. J. Mod. Phys. B 29, 1550195 (2015)

    Article  Google Scholar 

  34. Jeitschko, W.: Transition metal stannides with MgAgAs and MnCu2Al type structure. Metall Trans 1, 3159–3162 (1970)

    Article  Google Scholar 

  35. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolveton, C.: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501 (2013)

    Article  Google Scholar 

  36. Wang, X., Dai, X., Wang, L., Liu, X., Wang, W., Wu, G., Tang, C., Liu, G.: J. Magn. Magn. Mater. 378, 16 (2015)

    Article  ADS  Google Scholar 

  37. Hautier, G., Ong, S.P., Jain, A., Moore, C.J., Ceder, G.: Phys. Rev. B 85, 155208 (2012)

    Article  ADS  Google Scholar 

  38. Thomas Charpin, Lab. Géométraux de l’IPGP. Paris, France

  39. Skinko, G.V., Smirnow, N.A.: J. Phys. Condens. Matter 14, 6989 (2002)

    Article  ADS  Google Scholar 

  40. Schreiber, E., Anderson, O.L., Soga, N.: Elastic constants and their measurement, p. 40. McGraw-Hill, NewYork (1974)

    Google Scholar 

  41. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  42. Frantsevich, N., Voronov, F.F., Bocuta, S.K., Frantsevich, I.N.: Elastic constants and elastic moduli of metals and insulators. In: Handbook, pp. 60–180. Naukova Dumka, Kiev (1983)

    Google Scholar 

  43. Haines, J., Leger, J.M., Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Sci. 31, 1 (2001)

    Article  ADS  Google Scholar 

  44. Soulen, R.J., Byers, J.R.J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., Broussard, P.R., Tanaka, C.T., Nowak, J., Moodera, J.S., Barry, A., Coey, J.M.D.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998)

    Article  ADS  Google Scholar 

  45. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  46. Zheng, N., **, Y.: Band-gap and Slater-Pauling rule in half-metallic Ti2-based Heusler alloys: a first-principles study. J. Magn. Magn. Mater. 324, 3099–3104 (2012)

    Article  ADS  Google Scholar 

  47. Birsan, A.J.: Magnetism in the new full-Heusler compound, Zr2CoAl: a first-principles study. Curr. Appl. Phys. 14, 1434–1436 (2014)

    Article  ADS  Google Scholar 

  48. Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  49. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C.: Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment. ApplPhysLett. 88, 032503 (2006)

    ADS  Google Scholar 

  50. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.J., Morais, J.: Geometric, electronic, and magnetic structure of Co2FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B 72, 184434 (2005)

    Article  ADS  Google Scholar 

  51. Madsen, G.K., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  52. Ding, G., Gao, G.Y., Yao, K.L.: J. Phys. D 48(1–4), 235302 (2015)

    Article  ADS  Google Scholar 

  53. de Aercio, F.F., Pereira, F., de Souza, S.M., Ghosh, A.: Mater. Today Commun. 20, 101613 (2020)

    Google Scholar 

  54. Samsonidze, G., Kozinsky, B.: Adv. Energy Mater. 8, 1800246 (2018)

    Article  Google Scholar 

  55. Guo, S., Jia, T.: andYongsheng Zhang. J. Phys. Chem. C 123, 18824–18833 (2019)

    Article  Google Scholar 

  56. Kim, S.W., Kimura, Y., Mishima, Y.: Intermetallics 15, 349–356 (2007)

    Article  Google Scholar 

  57. Yang, J., Li, H., Wu, T., Zhang, W., Chen, L., Yang, J.: Adv. Funct. Mater. 18, 2880–2888 (2008)

    Article  Google Scholar 

  58. Bourachid, I., Caid, M., Rached, Y., Rached, D., Bouafia, H., Abidri, B., Rached, H., Heireche, H.: Indian J. Phys. 98, 1601–1610 (2024)

    Article  ADS  Google Scholar 

  59. Benidris, M., Aziz, Z., Khandy, S.A., Terkhi, S., Ahmad, M.A., Bouadjemi, B., Bennani, M.A., Laref, A.: Bull. Mater. Sci. 44, 221 (2021)

    Article  Google Scholar 

  60. Young, D.P., Khalifah, P., Cava, R.J., Ramirez, A.P.: J. Appl. Phys. 87, 317–321 (2000)

    Article  ADS  Google Scholar 

  61. Naydenov, G.A., Hasnip, P.J., Lazarov, V.K., Probert, M.I.J.: J. Phys. Mater. 2, 035002 (2019)

    Article  ADS  Google Scholar 

  62. Fu, C., **e, H., Liu, Y., Zhu, T.J., **e, J., Zhao, X.B.: Intermetal J 32, 39–43 (2013)

    Article  Google Scholar 

  63. Cherifi, F., Mostefa, Z., Boukra, A., Meghoufel, Z.F., Bouattou, M., Kadi Allah, F., Terki, F.: Phys. Status Solidi B 257, 2000271 (2020)

    Article  ADS  Google Scholar 

  64. Slack, G.A.: J. Phys. Chem. Solids 34, 321 (1973)

    Article  ADS  Google Scholar 

  65. Julian, C.L.: Phys. Rev. 137, A128 (1965)

    Article  ADS  Google Scholar 

  66. Bhattacharya, S., Skove, M.J., Russell, M., Tritt, T.M., **a, Y., Ponnambalam, V., Poon, S.J., Thadhani, N.: Phys. Rev. B 77, 184203 (2008)

    Article  ADS  Google Scholar 

  67. Yu, C., Zhu, T.-J., **ao, K., Shen, J.-J., Yang, S.-H., Zhao, X.-B.: J. Electron. Mater. 39, 2008–2012 (2010)

    Article  ADS  Google Scholar 

  68. Hori, A., Minami, S., Saito, M., Ishii, F.: Appl. Phys. Lett. 116, 242408 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mansour Benidris wrote the main manuscript text, M. A. Bennani prepared Figs. 3 and 4, and Z. F. Meghoufel and O. Akel prepared Fig. 2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mansour Benidris.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benidris, M., Mghoufel, Z.F., Bennani, M.A. et al. Electronic, Structural, Thermodynamic, and Mechanical Stabilities, Half-Metallicity, and Thermoelectric Performances of CE-Based Half-Heusler. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06780-z

Keywords

Navigation