Log in

Green Preparation of Chitin and Nanochitin from Black Soldier Fly for Production of Biodegradable Packaging Material

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Black Soldier Fly (BSF) is a novel option to convert organic waste into high economic products such as protein, lipid, and chitin. Due to the drawbacks of petrochemical-based plastic, the biodegradable film has attracted much attention; among these, chitin-based packaging film is a promising material. This study extracted the chitin from BSF using a co-solvent of glycerol and hydrochloric acid (HCl). The chitin nanofiber has a dimension of 34 nm in width and 494 in length following Transmission Electron Microscopy analysis (TEM). Besides, the obtained chitin was also added to the gelatin-based film for packaging application. The chitin/gelation packaging was evaluated for its suitability in food application by testing its antioxidant activity, thickness, grammage, opacity, moisture, and water solubility. The film developed with more than 0.5 wt.% chitin and nanochitin showed high antioxidant activity, while adding chitin does not significantly change the thermal stability of the gelatin films. The chemical structure of chitin and bio-packaging was determined by Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), and Thermogravimetric Analysis (TGA). This study provides a green and facile approach for chitin production from BSF by using co-solvent and reveals the potential of insect chitin in creating active bio-packaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Le TM, Tran UPN, Duong YHP et al (2022) Development of a paddy-based biorefinery approach toward improvement of biomass utilization for more bioproducts. Chemosphere 289:133249

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Yao H, Chapman SJ et al (2020) Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. Environ Int 142:105834

    Article  CAS  PubMed  Google Scholar 

  3. Mertenat A, Diener S, Zurbrügg C (2019) Black Soldier Fly biowaste treatment–assessment of global warming potential. Waste Manag 84:173–181

    Article  CAS  PubMed  Google Scholar 

  4. Lalander C, Diener S, Zurbrügg C, Vinnerås B (2019) Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J Clean Prod 208:211–219

    Article  Google Scholar 

  5. Verheyen GR, Ooms T, Vogels L et al (2018) Insects as an alternative source for the production of fats for cosmetics. J Cosmet Sci 69:187–202

    PubMed  Google Scholar 

  6. Smets R, Verbinnen B, Van De Voorde I et al (2020) Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valoriz 11:6455–6466

    Article  CAS  Google Scholar 

  7. Hahn T, Tafi E, Paul A et al (2020) Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol 95:2775–2795

    Article  CAS  Google Scholar 

  8. Lin Y-S, Liang S-H, Lai W-L et al (2021) Sustainable extraction of chitin from spent pupal shell of black soldier fly. Processes 9:976

    Article  CAS  Google Scholar 

  9. Wang H, ur Rehman K, Feng W et al (2020) Physicochemical structure of chitin in the develo** stages of black soldier fly. Int J Biol Macromol 149:901–907

    Article  CAS  PubMed  Google Scholar 

  10. Caligiani A, Marseglia A, Leni G et al (2018) Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res Int 105:812–820

    Article  CAS  PubMed  Google Scholar 

  11. Hajji S, Ghorbel-Bellaaj O, Younes I et al (2015) Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants. Int J Biol Macromol 79:167–173

    Article  CAS  PubMed  Google Scholar 

  12. Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  13. Hong S, Yuan Y, Yang Q et al (2018) Versatile acid base sustainable solvent for fast extraction of various molecular weight chitin from lobster shell. Carbohydr Polym 201:211–217

    Article  CAS  PubMed  Google Scholar 

  14. Hong S, Yang Q, Yuan Y et al (2019) Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell. Carbohydr Polym 205:236–243. https://doi.org/10.1016/j.carbpol.2018.10.045

    Article  CAS  PubMed  Google Scholar 

  15. Perosa A, Tundo P (2005) Selective hydrogenolysis of glycerol with raney nickel. Ind Eng Chem Res 44:8535–8537

    Article  CAS  Google Scholar 

  16. Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields and selectivities. Environ Chem Lett 5:67–71

    Article  CAS  Google Scholar 

  17. Kaya M, Sofi K, Sargin I, Mujtaba M (2016) Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydr Polym 145:64–70

    Article  CAS  PubMed  Google Scholar 

  18. Waśko A, Bulak P, Polak-Berecka M et al (2016) The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int J Biol Macromol 92:316–320

    Article  PubMed  Google Scholar 

  19. Cheng H, Chen L, McClements DJ et al (2021) Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 114:70–82

    Article  CAS  Google Scholar 

  20. De Clercq K, Schelfhout C, Bracke M et al (2016) Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: in vitro and in vivo characterization. Biomaterials 96:33–46

    Article  PubMed  Google Scholar 

  21. Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (2017) Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. Int J Biol Macromol 97:373–381

    Article  CAS  PubMed  Google Scholar 

  22. Said NS, Sarbon NM (2020) Response surface methodology (RSM) of chicken skin gelatin based composite films with rice starch and curcumin incorporation. Polym Test 81:106161

    Article  CAS  Google Scholar 

  23. Soetemans L, Uyttebroek M, Bastiaens L (2020) Characteristics of chitin extracted from black soldier fly in different life stages. Int J Biol Macromol 165:3206–3214

    Article  CAS  PubMed  Google Scholar 

  24. Cd MD, Joseph R, Begum PMS et al (2020) Chitin nanowhiskers from shrimp shell waste as green filler in acrylonitrile-butadiene rubber: processing and performance properties. Carbohydr Polym 245:116505

    Article  Google Scholar 

  25. Zadeh EM, O’Keefe SF, Kim Y-T (2018) Utilization of lignin in biopolymeric packaging films. ACS Omega 3:7388–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fernández-Marín R, Fernandes SCM, Sánchez MÁA, Labidi J (2022) Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll 123:107119

    Article  Google Scholar 

  27. Hu X, Yuan L, Han L et al (2019) Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. RSC Adv 9:27449–27454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D’Hondt E, Soetemans L, Bastiaens L et al (2020) Simplified determination of the content and average degree of acetylation of chitin in crude black soldier fly larvae samples. Carbohydr Res 488:107899

    Article  PubMed  Google Scholar 

  29. Huang W-C, Zhao D, Guo N et al (2018) Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J Agric Food Chem 66:11897–11901

    Article  CAS  PubMed  Google Scholar 

  30. Kaya M, Mujtaba M, Ehrlich H et al (2017) On chemistry of γ-chitin. Carbohydr Polym 176:177–186

    Article  CAS  PubMed  Google Scholar 

  31. Vinodh R, Sasikumar Y, Kim H-J et al (2021) Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: a critical review. J Ind Eng Chem 104:155–171

    Article  CAS  Google Scholar 

  32. Namboodiri MMT, Pakshirajan K (2020) Valorization of waste biomass for chitin and chitosan production. Waste biorefinery. Elsevier, Amsterdam, pp 241–266

    Chapter  Google Scholar 

  33. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  PubMed  Google Scholar 

  34. Etxabide A, Kilmartin PA, Maté JI, Gómez-Estaca J (2022) Characterization of glucose-crosslinked gelatin films reinforced with chitin nanowhiskers for active packaging development. LWT 154:112833

    Article  CAS  Google Scholar 

  35. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77:410–419

    Article  CAS  Google Scholar 

  36. Zozo B, Wicht MM, Mshayisa VV, van Wyk J (2022) The nutritional quality and structural analysis of black soldier fly larvae flour before and after defatting. Insects 13:168

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liao J, Huang H (2022) Preparation, characterization and gelation of a fungal nano chitin derived from Hericium erinaceus residue. Polymers (Basel) 14:474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jang MK, Kong BG, Il JY et al (2004) Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J Polym Sci Part A 42:3423–3432. https://doi.org/10.1002/pola.20176

    Article  CAS  Google Scholar 

  39. Poerio A, Petit C, Jehl J-P et al (2020) Extraction and physicochemical characterization of chitin from cicada orni sloughs of the south-eastern French Mediterranean basin. Molecules 25:2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joseph B, Mavelil Sam R, Balakrishnan P et al (2020) Extraction of nanochitin from marine resources and fabrication of polymer nanocomposites: recent advances. Polymers (Basel) 12:1664

    Article  CAS  PubMed  Google Scholar 

  41. Gond RK, Gupta MK, Jawaid M (2021) Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications. Polym Compos 42:5400–5412

    Article  CAS  Google Scholar 

  42. Huang C, Feng W, **ong J et al (2019) Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. Eur Food Res Technol 245:11–21

    Article  CAS  Google Scholar 

  43. Złotko K, Waśko A, Kamiński DM et al (2021) Isolation of chitin from black soldier fly (Hermetia illucens) and its usage to metal sorption. Polymers (Basel) 13:818

    Article  PubMed  Google Scholar 

  44. Pulla-Huillca PV, Gomes A, Quinta Barbosa Bittante AM et al (2021) Wettability of gelatin-based films: the effects of hydrophilic or hydrophobic plasticizers and nanoparticle loads. J Food Eng 297:110480. https://doi.org/10.1016/j.jfoodeng.2021.110480

    Article  CAS  Google Scholar 

  45. Hanani ZAN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Biol Macromol 71:94–102

    Article  Google Scholar 

  46. Li Y, Cao C, Pei Y et al (2019) Preparation and properties of microfibrillated chitin/gelatin composites. Int J Biol Macromol 130:715–719

    Article  CAS  PubMed  Google Scholar 

  47. Liu F, Chiou B-S, Avena-Bustillos RJ et al (2017) Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocoll 65:1–9

    Article  Google Scholar 

  48. Rosseto M, Rigueto CVT, Krein DDC et al (2021) Accelerated aging of starch-gelatin films with enzymatic treatment. J Polym Environ 29:1063–1075

    Article  CAS  Google Scholar 

  49. Roy S, Biswas D, Rhim J-W (2022) Gelatin/cellulose nanofiber-based functional nanocomposite film incorporated with zinc oxide nanoparticles. J Compos Sci 6:223

    Article  CAS  Google Scholar 

  50. Hafsa J, Smach MA, Charfeddine B et al (2016) Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Annales pharmaceutiques francaises. Elsevier, Amsterdam, pp 27–33

    Google Scholar 

  51. Ilyas HN, Zia KM, Rehman S et al (2021) Utilization of shellfish industrial waste for isolation, purification, and characterizations of chitin from crustacean’s sources in Pakistan. J Polym Environ 29:2337–2348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, investigation, writing, review and editing: TML, CLT, TXN; Writing—review and editing, investigation: YHPD; supervision, methodology, and conceptualization, review and editing: PKL; Funding acquisition, supervision, methodology, and conceptualization, review and editing: VTT. TML, TXN, and CLT have contributed equally and have the right to list their name first in their CV. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Viet T. Tran.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 267 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.M., Tran, C.L., Nguyen, T.X. et al. Green Preparation of Chitin and Nanochitin from Black Soldier Fly for Production of Biodegradable Packaging Material. J Polym Environ 31, 3094–3105 (2023). https://doi.org/10.1007/s10924-023-02793-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02793-2

Keywords

Navigation