Log in

A Compact Coupling Interface Method with Second-Order Gradient Approximation for Elliptic Interface Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose the Compact Coupling Interface Method, a finite difference method capable of obtaining second-order accurate approximations of not only solution values but their gradients, for elliptic complex interface problems with interfacial jump conditions. Such elliptic interface boundary value problems with interfacial jump conditions are a critical part of numerous applications in fields such as heat conduction, fluid flow, materials science, and protein docking, to name a few. A typical example involves the construction of biomolecular shapes, where such elliptic interface problems are in the form of linearized Poisson–Boltzmann equations, involving discontinuous dielectric constants across the interface, that govern electrostatic contributions. Additionally, when interface dynamics are involved, the normal velocity of the interface might be comprised of the normal derivatives of solution, which can be approximated to second-order by our method, resulting in accurate interface dynamics. Our method, which can be formulated in arbitrary spatial dimensions, combines elements of the highly-regarded Coupling Interface Method, for such elliptic interface problems, and Smereka’s second-order accurate discrete delta function. The result is a variation and hybrid with a more compact stencil than that found in the Coupling Interface Method, and with advantages, borne out in numerical experiments involving both geometric model problems and complex biomolecular surfaces, in more robust error profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availibility

The code is available at https://github.com/Rayzhangzirui/ccim.

References

  1. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577 (2005). https://doi.org/10.1016/j.jcp.2004.07.018

    Article  MathSciNet  Google Scholar 

  2. Gibou, F., Fedkiw, R.P., Cheng, L.T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205 (2002). https://doi.org/10.1006/jcph.2001.6977

    Article  MathSciNet  Google Scholar 

  3. Bochkov, D., Gibou, F.: Solving elliptic interface problems with jump conditions on cartesian grids. J. Comput. Phys. 407, 109269 (2020). https://doi.org/10.1016/j.jcp.2020.109269

    Article  MathSciNet  Google Scholar 

  4. Hou, T.Y., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele–Shaw flow. J. Comput. Phys. 134(2), 236 (1997). https://doi.org/10.1006/jcph.1997.5689

    Article  MathSciNet  Google Scholar 

  5. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Methods Eng. 64(7), 940 (2005). https://doi.org/10.1002/nme.1401

    Article  MathSciNet  Google Scholar 

  6. Zhao, S.: High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces. J. Comput. Phys. 229(9), 3155 (2010). https://doi.org/10.1016/j.jcp.2009.12.034

    Article  MathSciNet  Google Scholar 

  7. Hadley, G.: High-accuracy finite-difference equations for dielectric waveguide analysis I: uniform regions and dielectric interfaces. J. Lightwave Technol. 20(7), 1210 (2002). https://doi.org/10.1109/JLT.2002.800361

    Article  Google Scholar 

  8. Shu, Y.C., Chern, I.L., Chang, C.C.: Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method. J. Comput. Phys. 275, 642 (2014). https://doi.org/10.1016/j.jcp.2014.07.017

    Article  MathSciNet  Google Scholar 

  9. Zhou, S., Cheng, L.T., Dzubiella, J., Li, B., McCammon, J.A.: Variational implicit solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput. 10(4), 1454 (2014). https://doi.org/10.1021/ct401058w

    Article  Google Scholar 

  10. Zhong, Y., Ren, K., Tsai, R.: An implicit boundary integral method for computing electric potential of macromolecules in solvent. J. Comput. Phys. 359, 199 (2018). https://doi.org/10.1016/j.jcp.2018.01.021

    Article  MathSciNet  Google Scholar 

  11. Macklin, P., Lowengrub, J.: Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191 (2005). https://doi.org/10.1016/j.jcp.2004.08.010

    Article  MathSciNet  Google Scholar 

  12. Macklin, P., Lowengrub, J.S.: A new ghost cell/level set method for moving boundary problems: application to tumor growth. J. Sci. Comput. 35(2), 266 (2008). https://doi.org/10.1007/s10915-008-9190-z

    Article  MathSciNet  Google Scholar 

  13. Dzubiella, J., Swanson, J.M.J., McCammon, J.A.: Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96(8), 087802 (2006). https://doi.org/10.1103/PhysRevLett.96.087802

    Article  Google Scholar 

  14. Dzubiella, J., Swanson, J.M.J., McCammon, J.A.: Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124(8), 084905 (2006). https://doi.org/10.1063/1.2171192

    Article  Google Scholar 

  15. Wang, Z., Che, J., Cheng, L.T., Dzubiella, J., Li, B., McCammon, J.A.: Level-set variational implicit-solvent modeling of biomolecules with the coulomb-field approximation. J. Chem. Theory Comput. 8(2), 386 (2012). https://doi.org/10.1021/ct200647j

    Article  Google Scholar 

  16. Zhang, Z., Ricci, C.G., Fan, C., Cheng, L.T., Li, B., McCammon, J.A.: Coupling Monte Carlo, variational implicit solvation, and binary level-set for simulations of biomolecular binding. J. Chem. Theory Comput. (2021). https://doi.org/10.1021/acs.jctc.0c01109

    Article  Google Scholar 

  17. Zhang, R.Z., Cheng, L.T.: Binary level set method for variational implicit solvation model. SIAM J. Sci. Comput. (2023). https://doi.org/10.1137/22M1508339

    Article  MathSciNet  Google Scholar 

  18. Izzo, F., Zhong, Y., Runborg, O., Tsai, R.: Corrected Trapezoidal Rule-IBIM for linearized Poisson-Boltzmann equation (2022). https://doi.org/10.48550/ar**v.2210.03699

  19. Holst, M., Saied, F.: Multigrid solution of the Poisson–Boltzmann equation. J. Comput. Chem. 14(1), 105 (1993). https://doi.org/10.1002/jcc.540140114

    Article  Google Scholar 

  20. Holst, M., Kozack, R.E., Saied, F., Subramaniam, S.: Treatment of electrostatic effects in proteins: multigrid-based newton iterative method for solution of the full nonlinear Poisson–Boltzmann equation. Proteins 18(3), 231 (1994). https://doi.org/10.1002/prot.340180304

    Article  Google Scholar 

  21. Li, B.: Minimization of electrostatic free energy and the Poisson–Boltzmann Equation for Molecular Solvation with Implicit Solvent. SIAM J. Math. Anal. 40(6), 2536 (2009). https://doi.org/10.1137/080712350

    Article  MathSciNet  Google Scholar 

  22. Chern, I.L., Shu, Y.C.: A coupling interface method for elliptic interface problems. J. Comput. Phys. 225(2), 2138 (2007). https://doi.org/10.1016/j.jcp.2007.03.012

    Article  MathSciNet  Google Scholar 

  23. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences. Springer, New York (2003). https://doi.org/10.1007/b98879

  24. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12 (1988). https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  Google Scholar 

  25. Cheng, L.T., Wang, Z., Setny, P., Dzubiella, J., Li, B., McCammon, J.A.: Interfaces and hydrophobic interactions in receptor-ligand systems: a level-set variational implicit solvent approach. J. Chem. Phys. 131(14), 144102 (2009). https://doi.org/10.1063/1.3242274

    Article  Google Scholar 

  26. Beale, J.T.: A grid-based boundary integral method for elliptic problems in three dimensions. SIAM J. Numer. Anal. 42(2), 599 (2004). https://doi.org/10.1137/S0036142903420959

    Article  MathSciNet  Google Scholar 

  27. Guo, R., Zhang, X.: Solving three-dimensional interface problems with immersed finite elements: a-priori error analysis. J. Comput. Phys. 441, 110445 (2021). https://doi.org/10.1016/j.jcp.2021.110445

    Article  MathSciNet  Google Scholar 

  28. Guittet, A., Lepilliez, M., Tanguy, S., Gibou, F.: Solving elliptic problems with discontinuities on irregular domains—the Voronoi interface method. J. Comput. Phys. 298, 747 (2015). https://doi.org/10.1016/j.jcp.2015.06.026

    Article  MathSciNet  Google Scholar 

  29. Chen, Z.M., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175 (1998). https://doi.org/10.1007/s002110050336

    Article  MathSciNet  Google Scholar 

  30. Huang, J.G., Zou, J.: A Mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22(4), 549 (2002). https://doi.org/10.1093/imanum/22.4.549

    Article  MathSciNet  Google Scholar 

  31. Li, Z.L., Wang, W.C., Chern, I.L., Lai, M.C.: New formulations for interface problems in polar coordinates. SIAM J. Sci. Comput. 25(1), 224 (2003). https://doi.org/10.1137/S106482750139618X

    Article  MathSciNet  Google Scholar 

  32. Guo, H., Yang, X.: Gradient recovery for elliptic interface problem: III. Nitsche’s method. J. Comput. Phys. 356, 46 (2018). https://doi.org/10.1016/j.jcp.2017.11.031

    Article  MathSciNet  Google Scholar 

  33. Guo, R., Lin, T., Lin, Y.: A fixed Mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. 79(1), 148 (2019). https://doi.org/10.1007/s10915-018-0847-y

    Article  MathSciNet  Google Scholar 

  34. Guo, R.: Solving Parabolic Moving Interface Problems with Dynamical Immersed Spaces on Unfitted Meshes: Fully Discrete Analysis. SIAM J. Numer. Anal. 59(2), 797 (2021). https://doi.org/10.1137/20M133508X

    Article  MathSciNet  Google Scholar 

  35. Gong, Y., Li, B., Li, Z.: Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions. SIAM J. Numer. Anal. 46(1), 472 (2008). https://doi.org/10.1137/060666482

    Article  MathSciNet  Google Scholar 

  36. Becker, R., Burman, E., Hansbo, P.: A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198(41), 3352 (2009). https://doi.org/10.1016/j.cma.2009.06.017

    Article  MathSciNet  Google Scholar 

  37. Burman, E.: Ghost penalty. C. R. Math. 348(21), 1217 (2010). https://doi.org/10.1016/j.crma.2010.10.006

    Article  MathSciNet  Google Scholar 

  38. Chu, C.C., Graham, I.G., Hou, T.Y.: A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comput. 79(272), 1915 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zunino, P., Cattaneo, L., Colciago, C.M.: An unfitted interface penalty method for the numerical approximation of contrast problems. Appl. Numer. Math. 61(10), 1059 (2011). https://doi.org/10.1016/j.apnum.2011.06.005

    Article  MathSciNet  Google Scholar 

  40. Barrau, N., Becker, R., Dubach, E., Luce, R.: A robust variant of NXFEM for the interface problem. C. R. Math. 350(15), 789 (2012). https://doi.org/10.1016/j.crma.2012.09.018

    Article  MathSciNet  Google Scholar 

  41. Adjerid, S., Babuška, I., Guo, R., Lin, T.: An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions. Comput. Methods Appl. Mech. Eng. 404, 115770 (2023). https://doi.org/10.1016/j.cma.2022.115770

    Article  MathSciNet  Google Scholar 

  42. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the stokes problem. J. Sci. Comput. 61(3), 604 (2014). https://doi.org/10.1007/s10915-014-9838-9

    Article  MathSciNet  Google Scholar 

  43. Guzmán, J., Sánchez, M.A., Sarkis, M.: A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73(1), 330 (2017). https://doi.org/10.1007/s10915-017-0415-x

    Article  MathSciNet  Google Scholar 

  44. Hu, W.F., Lin, T.S., Lai, M.C.: A Discontinuity Capturing Shallow Neural Network for Elliptic Interface Problems (2021). https://doi.org/10.48550/ar**v.2106.05587

  45. Guo, H., Yang, X.: Deep unfitted Nitsche method for elliptic interface problems. Commun. Comput. Phys. 31(4), 1162 (2022). https://doi.org/10.4208/cicp.OA-2021-0201

    Article  MathSciNet  Google Scholar 

  46. Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200(2), 462 (2004). https://doi.org/10.1016/j.jcp.2004.04.011

    Article  MathSciNet  Google Scholar 

  47. Tornberg, A.K., Engquist, B.: Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19(1), 527 (2003). https://doi.org/10.1023/A:1025332815267

    Article  MathSciNet  Google Scholar 

  48. Peskin, C.S.: The immersed boundary method. In: Acta Numerica 2002, vol. 11, Acta Numerica, vol. 11, ed. by A. Iserles (Cambridge Univ Press, The Pitt Building, Trum**ton St, Cambridge CB2 1RP, Cambs, England, 2002), pp. 479–517. https://doi.org/10.1017/S0962492902000077

  49. Peskin, C.S.: Numerical-analysis of blood-flow in heart. J. Comput. Phys. 25(3), 220 (1977). https://doi.org/10.1016/0021-9991(77)90100-0

    Article  MathSciNet  Google Scholar 

  50. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019 (1994). https://doi.org/10.1137/0731054

    Article  MathSciNet  Google Scholar 

  51. Li, Z., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23(1), 339 (2001). https://doi.org/10.1137/S1064827500370160

    Article  MathSciNet  Google Scholar 

  52. Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230 (1998). https://doi.org/10.1137/S0036142995291329

    Article  MathSciNet  Google Scholar 

  53. Li, Z., Ji, H., Chen, X.: Accurate solution and gradient computation for elliptic interface problems with variable coefficients. SIAM J. Numer. Anal. 55(2), 570 (2017). https://doi.org/10.1137/15M1040244

    Article  MathSciNet  Google Scholar 

  54. Liu, X.D., Sideris, T.: Convergence of the ghost fluid method for elliptic equations with interfaces. Math. Comput. 72(244), 1731 (2003). https://doi.org/10.1090/S0025-5718-03-01525-4

    Article  MathSciNet  Google Scholar 

  55. Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151 (2000). https://doi.org/10.1006/jcph.2000.6444

    Article  MathSciNet  Google Scholar 

  56. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  Google Scholar 

  57. Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J. Numer. Anal. 37(3), 827 (2000). https://doi.org/10.1137/S0036142997328664

    Article  MathSciNet  Google Scholar 

  58. Berthelsen, P.A.: A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions. J. Comput. Phys. 197(1), 364 (2004). https://doi.org/10.1016/j.jcp.2003.12.003

    Article  MathSciNet  Google Scholar 

  59. Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1 (2006). https://doi.org/10.1016/j.jcp.2005.07.022

    Article  MathSciNet  Google Scholar 

  60. Yu, S., Zhou, Y., Wei, G.W.: Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys. 224(2), 729 (2007). https://doi.org/10.1016/j.jcp.2006.10.030

    Article  MathSciNet  Google Scholar 

  61. Yu, S., Wei, G.W.: Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J. Comput. Phys. 227(1), 602 (2007). https://doi.org/10.1016/j.jcp.2007.08.003

    Article  MathSciNet  Google Scholar 

  62. Shu, Y.C., Kao, C.Y., Chern, I.L., Chang, C.C.: Augmented coupling interface method for solving eigenvalue problems with sign-changed coefficients. J. Comput. Phys. 229(24), 9246 (2010). https://doi.org/10.1016/j.jcp.2010.09.001

    Article  MathSciNet  Google Scholar 

  63. Smereka, P.: The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211(1), 77 (2006). https://doi.org/10.1016/j.jcp.2005.05.005

    Article  MathSciNet  Google Scholar 

  64. Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21(2), 285 (1984). https://doi.org/10.1137/0721021

    Article  MathSciNet  Google Scholar 

  65. Hager, W.W.: Condition estimates. SIAM J. Sci. Stat. Comput. 5(2), 311 (1984). https://doi.org/10.1137/0905023

    Article  MathSciNet  Google Scholar 

  66. Falgout, R.D., Yang, U.M.: Hypre: a library of high performance preconditioners. In: Computational Science—ICCS 2002, ed. by P.M.A. Sloot, A.G. Hoekstra, C.J.K. Tan, J.J. Dongarra (Springer, Berlin, Heidelberg, 2002), Lecture Notes in Computer Science, pp. 632–641. https://doi.org/10.1007/3-540-47789-6_66

  67. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591 (1996). https://doi.org/10.1073/pnas.93.4.1591

    Article  MathSciNet  Google Scholar 

  68. Brown, D.G., Sanderson, M.R., Garman, E., Neidle, S.: Crystal structure of a Berenil-d(CGCAAATTTGCG) complex: an example of drug-DNA recognition based on sequence-dependent structural features. J. Mol. Biol. 226(2), 481 (1992). https://doi.org/10.1016/0022-2836(92)90962-J

    Article  Google Scholar 

  69. Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., Pavletich, N.P.: Structure of the MDM2 oncoprotein bound to the P53 tumor suppressor transactivation domain. Science (New York, N.Y.) 274(5289), 948 (1996). https://doi.org/10.1126/science.274.5289.948

    Article  Google Scholar 

  70. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A.: PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32(suppl-2), W665 (2004). https://doi.org/10.1093/nar/gkh381

    Article  Google Scholar 

  71. Burman, E., Guzmán, J., Sánchez, M.A., Sarkis, M.: Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems. IMA J. Numer. Anal. 38(2), 646 (2018). https://doi.org/10.1093/imanum/drx017

    Article  MathSciNet  Google Scholar 

  72. Burman, E., Zunino, P.: Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Frontiers in Numerical Analysis—Durham 2010, ed. by J. Blowey, M. Jensen, Lecture Notes in Computational Science and Engineering (Springer, Berlin, Heidelberg, 2012), pp. 227–282. https://doi.org/10.1007/978-3-642-23914-4_4

Download references

Acknowledgements

This work was funded by NSF Awards 1913144 and 2208465. The authors would like to thank Professor Bo Li for helpful discussions, guidance and support in numerical aspects of the paper. The second author would like to thank Professor Yu-Chen Shu for helpful discussions on CIM.

Funding

This work was funded by NSF Awards 1913144 and 2208465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Zirui Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Differentiation of the Jump Condition

In this appendix, we detail the calculation of the formula for approximation of \([\nicefrac {\partial ^{2} u}{\partial x_k^{2}}]\), through equations involving terms of \([\nabla ^2 u]\), as found in Sect. 2.4. In the following derivation, quantities related to f, a, \(\epsilon \) and \(\tau \) are all known. Our final goal is to write the jump of the second derivatives \([\nabla ^2u]\) in terms of the known quantities and the one-sided derivatives \(\nabla u^-\), \(\nabla ^2u^-\). Since our interface is smooth, we can consider any smooth extension of \(\tau \) and \(\sigma \) off the interface, therefore quantities such as \(\nabla ^2\tau \) and \(\nabla \tau \cdot {\textbf{n}}\) are well-defined.

We first consider jumps of the first derivatives of u at the interface, especially in terms of jumps of the normal and tangential derivatives of u. Taking tangential derivatives on both sides of \(u^+-u^- = [u] = \tau \), we get

$$\begin{aligned}{}[\nabla u\cdot {\textbf{s}}_j] = \nabla u^+\cdot {\textbf{s}}_j-\nabla u^-\cdot {\textbf{s}}_j = \nabla \tau \cdot {\textbf{s}}_j, \end{aligned}$$

for \(j = 1,\dots ,d-1\). On the other hand, with

figure c

we can get, when \(v = \nabla u\cdot n\),

figure d

These equations for the jumps of the normal and tangential derivatives of u can then be used to get \([\nabla u]\), from

figure e

Thus having handled jumps of first derivatives of u, we now turn our attention jumps of second derivatives and derive equations for the terms of \([\nabla ^2 u]\) in three ways.

Tangential derivative of jump of tangential derivative: We can get equations on terms of \([\nabla ^2 u]\) by starting with the jump of the tangential derivative of u along \({\textbf{s}}_m\), namely \([\nabla u\cdot s_m]\), and taking its tangential derivative along \({\textbf{s}}_n\), giving \(\nabla [\nabla u\cdot s_m]\cdot s_n\). This quantity can be written as

$$\begin{aligned} \nabla \left[ \nabla u \cdot {\textbf{s}}_m\right] \cdot {\textbf{s}}_n = \nabla (\nabla \tau \cdot {\textbf{s}}_m) \cdot {\textbf{s}}_n. \end{aligned}$$

However, we also have, using (11), that

$$\begin{aligned} \nabla \left[ \nabla u \cdot {\textbf{s}}_m\right] \cdot {\textbf{s}}_n= & {} {\textbf{s}}_n^T \left[ \nabla ^2 u\right] {\textbf{s}}_m + {\textbf{s}}_n^T\nabla {\textbf{s}}_m \left[ \nabla u\right] \\= & {} {\textbf{s}}_n^T \left[ \nabla ^2 u\right] {\textbf{s}}_m + \frac{1}{\epsilon ^+} \left( \sigma - \left[ \epsilon \right] \nabla u^-\cdot {\textbf{n}}\right) {\textbf{s}}_n^T\nabla {\textbf{s}}_m {\textbf{n}} + \sum _{j=1}^{d-1} (\nabla \tau \cdot {\textbf{s}}_j) {\textbf{s}}_n^T \nabla {\textbf{s}}_m {\textbf{s}}_j \end{aligned}$$

and, additionally, that

$$\begin{aligned} \nabla (\nabla \tau \cdot {\textbf{s}}_m) \cdot {\textbf{s}}_n= & {} {\textbf{s}}_n^T \nabla ^2 \tau {\textbf{s}}_m + s_n^T \nabla {\textbf{s}}_m \nabla \tau \\= & {} {\textbf{s}}_n^T \nabla ^2 \tau {\textbf{s}}_m + (\nabla \tau \cdot {\textbf{n}}) {\textbf{s}}_n^T \nabla {\textbf{s}}_m {\textbf{n}} + \sum _{j=1}^{d-1} (\nabla \tau \cdot {\textbf{s}}_j) {\textbf{s}}_n^T \nabla {\textbf{s}}_m {\textbf{s}}_j. \end{aligned}$$

Thus, equating these and solving for the term with jumps in second derivatives of u, especially simplifying using the fact that

$$\begin{aligned} \nabla {\textbf{n}}~ {\textbf{s}}_j = - \nabla {\textbf{s}}_j {\textbf{n}}, \quad j = 1, \dots , d-1, \end{aligned}$$

from taking the gradient on both sides of \({\textbf{n}} \cdot {\textbf{s}}_j = 0\) for \(j = 1, \dots , d-1\), we get (18):

$$\begin{aligned} {\textbf{s}}_n^T [\nabla ^2u]{\textbf{s}}_m = {\textbf{s}}_n^T \nabla ^2 \tau {\textbf{s}}_m - \frac{1}{\epsilon ^+}( \sigma - [\epsilon ] \nabla u^- \cdot {\textbf{n}}) {\textbf{s}}_n^T \nabla {\textbf{n}}{\textbf{s}}_m - (\nabla \tau \cdot {\textbf{n}}) {\textbf{s}}_n^T \nabla {\textbf{n}}{\textbf{s}}_m. \end{aligned}$$

Tangential derivative of flux jump: For more equations on terms of \([\nabla ^2 u]\), we consider the tangential derivative of the jump \([\epsilon \nabla u\cdot {\textbf{n}}]\) along \({\textbf{s}}_m\), which satisfies

$$\begin{aligned} \nabla [\epsilon \nabla u\cdot {\textbf{n}}]\cdot {\textbf{s}}_m = \nabla \sigma \cdot {\textbf{s}}_m, \end{aligned}$$

where \(\sigma \) is the jump of the flux. Expanding, we can get

$$\begin{aligned} \nabla \left[ \epsilon \nabla u \cdot {\textbf{n}}\right] \cdot {\textbf{s}}_m= & {} {\textbf{s}}_m^T \nabla (\epsilon ^+\left[ \nabla u\right] + \left[ \epsilon \right] \nabla u^-) {\textbf{n}} + {\textbf{s}}_m^T \nabla {\textbf{n}} (\epsilon ^+\left[ \nabla u\right] + \left[ \epsilon \right] \nabla u^-)\\= & {} \epsilon ^+{\textbf{s}}_m^T \left[ \nabla ^2u\right] {\textbf{n}} + {\textbf{s}}_m^T \nabla \epsilon ^+[\nabla u] \cdot {\textbf{n}} + \left[ \epsilon \right] {\textbf{s}}_m^T \nabla ^2u^- {\textbf{n}} + {\textbf{s}}_m^T \left[ \nabla \epsilon \right] \nabla u^- \cdot {\textbf{n}} \\{} & {} + \epsilon ^+{\textbf{s}}_m^T \nabla {\textbf{n}} \left[ \nabla u\right] + \left[ \epsilon \right] {\textbf{s}}_m^T \nabla {\textbf{n}} \nabla u^-. \end{aligned}$$

Now, substituting \([\nabla u]\) by equation (11) and rearranging, we get (20):

$$\begin{aligned} \begin{aligned} {\textbf{s}}_m^T [\nabla ^2u]{\textbf{n}}&= \frac{1}{\epsilon ^+} \nabla \sigma \cdot {\textbf{s}}_m - \frac{[\epsilon ]}{\epsilon ^+} {\textbf{s}}_m^T \nabla ^2u^- {\textbf{n}}- \frac{[\epsilon ]}{\epsilon ^+} {\textbf{s}}_m^T \nabla {\textbf{n}}\nabla u^- \\&- \sum _{k=1}^{d-1} (\nabla \tau \cdot {\textbf{s}}_k) {\textbf{s}}_m^T \nabla {\textbf{n}}{\textbf{s}}_k - \frac{1}{(\epsilon ^+)^2} (\nabla \epsilon ^+ \cdot {\textbf{s}}_m ) ( \sigma - [\epsilon ] \nabla u^- \cdot {\textbf{n}})\\&- \frac{1}{\epsilon ^+} [\nabla \epsilon \cdot {\textbf{s}}_m] (\nabla u^- \cdot {\textbf{n}}). \end{aligned} \end{aligned}$$

Jump of PDE: For our final equations on terms of \([\nabla ^2 u]\), we consider the original PDE. In \(\varOmega ^+\), we have

$$\begin{aligned} -\epsilon ^+\varDelta u^+ - \nabla \epsilon ^+\cdot \nabla u^+ + a^+ u^+ = f^+, \end{aligned}$$

while in \(\varOmega ^-\), we have

$$\begin{aligned} -\epsilon ^-\varDelta u^- - \nabla \epsilon ^-\cdot \nabla u^- + a^- u^- = f^-. \end{aligned}$$

Dividing these equations by \(\epsilon ^+\) and \(\epsilon ^-\), respectively, and finding the jump from their difference, we get

$$\begin{aligned}{}[\varDelta u]= & {} -\left[ \frac{f}{\epsilon }\right] - \left[ \frac{\nabla \epsilon }{\epsilon }\cdot \nabla u\right] + \left[ \frac{a}{\epsilon }u\right] \\= & {} -\left[ \frac{f}{\epsilon }\right] -\frac{\nabla \epsilon ^+}{\epsilon ^+} \cdot \left[ \nabla u\right] -\left[ \frac{\nabla \epsilon }{\epsilon }\right] \cdot \nabla u^- +\frac{a^+}{\epsilon ^+}\left[ u\right] +\left[ \frac{a}{\epsilon }\right] u^-\\= & {} -\left[ \frac{f}{\epsilon }\right] -\left[ \frac{\nabla \epsilon }{\epsilon }\right] \cdot \nabla u^- + \frac{a^+}{\epsilon ^+}\left[ u\right] + \left[ \frac{a}{\epsilon }\right] u^-\\{} & {} -\frac{1}{\epsilon ^+}\left( \left[ \nabla u \cdot {\textbf{n}}\right] (\nabla \epsilon ^+\cdot {\textbf{n}}) +\sum _{j=1}^{d-1}(\nabla \tau \cdot {\textbf{s}}_j) (\nabla \epsilon ^+\cdot {\textbf{s}}_j) \right) , \end{aligned}$$

which is (22).

The left hand side of equations (18) (20) and (22):

$$\begin{aligned} {\textbf{s}}_n^T [\nabla ^2u]{\textbf{s}}_m,\quad {\textbf{s}}_m^T [\nabla ^2u]{\textbf{n}}, \quad [\varDelta u] \quad \text {for}\ m = 1,\dots ,d-1\ \text {and}\ n = m,\dots ,d-1 \end{aligned}$$

where \([\nabla ^2u]\) are the unknown quantities, can be written as in the form of a matrix–vector product

$$\begin{aligned} G \left( \left[ \frac{\partial ^{2} u}{\partial x_k \partial x_l}\right] \right) _{1 \le k \le l \le d}. \end{aligned}$$

where G is a matrix that only depends on the normal and the tangent vectors, and the vector is a half-vectorization of the jump of the symmetric Hessian matrix \([\nabla ^2u]\).

We can show that the absolute value of the determinant of G is 1 in two and three dimensions. Since the equations are obtained at some interface point \({\hat{\textbf{x}}}\), we can use a local coordinate system such that \({\textbf{s}}_i = {\textbf{e}}_i\) for \(i=1,\dots ,d-1\) and \({\textbf{n}} = {\textbf{e}}_d\). By choosing a specific ordering for the equations and the half-vectorization, we can write the matrix–vector product in 2D as

$$\begin{aligned} \begin{pmatrix} {\textbf{s}}_1 [\nabla ^2u]{\textbf{s}}_1\\ {\textbf{s}}_1 [\nabla ^2u] {\textbf{n}} \\ [\varDelta u] \end{pmatrix} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0\\ 1 &{} \quad 1 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 1\\ \end{pmatrix} \begin{pmatrix} [u_{xx}]\\ [u_{xy}]\\ [u_{yy}]\\ \end{pmatrix} \end{aligned}$$

And in 3D

$$\begin{aligned} \begin{pmatrix} {\textbf{s}}_1 [\nabla ^2u]{\textbf{s}}_1\\ {\textbf{s}}_2 [\nabla ^2u]{\textbf{s}}_2\\ [\varDelta u]\\ {\textbf{s}}_1 [\nabla ^2u] {\textbf{s}}_2\\ {\textbf{s}}_1 [\nabla ^2u] {\textbf{n}}\\ {\textbf{s}}_2 [\nabla ^2u] {\textbf{n}}\\ \end{pmatrix} = \begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{} \quad 0 &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{} \quad 0 \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{} \quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{} \quad 1 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{pmatrix} \begin{pmatrix} [u_{xx}]\\ [u_{xy}]\\ [u_{yy}]\\ [u_{xy}]\\ [u_{xz}]\\ [u_{yz}]\\ \end{pmatrix} \end{aligned}$$

Therefore, the determinant of G is \(\pm 1\), depending on the ordering of the equations and the half-vectorization.

High Contrast Problem

One difficulty of interface problems is the so-called large contrast problem, where the ratio of the coefficients \(\epsilon ^+/\epsilon ^-\gg 1\). There are several works that analyze the high-contrast problems in the context of unfitted Nitsche finite element method [71] and unfitted finite element methods [38, 43, 71, 72]. For example, it can be shown that the flux error estimate is independent of the contrast for a class of unfitted Nitsche finite element methods [71].

Here we numerically demonstrate that our method is robust for high contrast problems. We consider the same exact solution (36) and coefficients (37) as in Example 1, but with \(\epsilon ^-=1\) and \(\epsilon ^+=1\) or \(\epsilon ^+=1e6\). Figure 16 shows the convergence result of the six interfaces. We see that both the solution and the gradient at the interface are uniformly second-order accurate for both cases. We also see that the error between the two cases is similar, demonstrating the robustness of our method for high contrast problems. The theoretical analysis of the high contrast problem is beyond the scope of this paper and will be studied in the future.

Fig. 16
figure 16

The log–log plot of the error versus N for the six surfaces. \(\epsilon ^-=1\) and \(\epsilon ^+=1\) or \(\epsilon ^+=1e6\). In each figure, N ranges from 50 to 140 with the increment \(\varDelta N = 5\). “Sol” denotes maximum errors of the solution \(\left\| u_e-u\right\| _\infty \). “Grad” denotes the maximum errors of the gradient at interface \(\left\| \nabla u_e - \nabla u\right\| _{\infty ,\varGamma }\). m is the slope of the fitting line

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R.Z., Cheng, LT. A Compact Coupling Interface Method with Second-Order Gradient Approximation for Elliptic Interface Problems. J Sci Comput 100, 32 (2024). https://doi.org/10.1007/s10915-024-02587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02587-1

Keywords

Navigation