Log in

Unveiling the Influence of Glutathione in Suppressing the Conversion of Aspirin to Salicylic Acid: A Fluorescence and DFT Study

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye’s syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV–Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Singh R, Tiwari MK, Gangopadhyay D, Mishra PC, Mishra H, Srivastava A, Singh RK (2018) Detection and monitoring of in vitro formation of salicylic acid from aspirin using fluorescence spectroscopic technique and DFT calculations. J Photochem Photobiol B Biol 189:292–297. https://doi.org/10.1016/j.jphotobiol.2018.11.004

    Article  CAS  Google Scholar 

  2. Adebayo GI, Williams J, Healy S (2007) Aspirin esterase activity — Evidence for skewed distribution in healthy volunteers. Eur J Intern Med 18:299–303. https://doi.org/10.1016/j.ejim.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Traynor K (2019) Pharmacists help put aspirin recommendations into practice. Am J Health Syst Pharm 76(18):1368. https://doi.org/10.1093/ajhp/zxz147

    Article  PubMed  Google Scholar 

  4. Lee TY, Hsu YC, Tseng HC, Yu SH, Lin JT, Wu MS, Wu CY (2019) Association of daily aspirin therapy with risk of hepatocellular carcinoma in patients with chronic hepatitis B. JAMA Intern Med 179(5):633–640. https://doi.org/10.1001/jamainternmed.2018.8342

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moreira AB, Dias ILT, Neto GO, Zagatto EAG, Kubota LT (2005) Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy. Anal Chim Acta 539(1–2):257–261. https://doi.org/10.1016/j.aca.2005.03.012

    Article  CAS  Google Scholar 

  6. Patil SM, Sataraddi SR, Bagoji AM, Pathan RM, Nandibewoor ST (2014) Electroanalysis lectrochemical behavior of graphene-based sensors on the redox mechanism of aspirin. Electroanalysis 26:831–839. https://doi.org/10.1002/elan.201300650

    Article  CAS  Google Scholar 

  7. Sostres C, Lanas A (2011) Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol 8(7):385–394. https://doi.org/10.1038/nrgastro.2011.97

    Article  CAS  PubMed  Google Scholar 

  8. Sekhar RV (2021) GlyNAC supplementation improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, aging hallmarks, metabolic defects, muscle strength, cognitive decline, and body composition: implications for healthy aging. J Nutr. https://doi.org/10.1093/jn/nxab309

    Article  PubMed  Google Scholar 

  9. Jahanban-Esfahlan A, Panahi-Azar V (2016) Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem 202:426–431. https://doi.org/10.1016/j.foodchem.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  10. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  PubMed  Google Scholar 

  11. Singh R, Tiwari MK, Singh RK (2024) Inhibition conversion of aspirin into salicylic acid in presence of glycine. J Fluoresc. https://doi.org/10.1007/s10895-024-03675-z. In press

  12. Singh AK, Firdaus Z, Prakash P, Singh R, Nandy N, Bansal M, Singh RK, Srivastava A, Roy JK, Mishra B, Singh RK (2017) Curcumin quantum dots mediated degradation of bacterial biofilms. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01517

    Article  PubMed  PubMed Central  Google Scholar 

  13. Singh R, Rai SK, Tiwari MK, Mishra A, Tewari AK, Mishra PC, Singh RK (2017) An excellent stable fluorescent probe: Selective and sensitive detection of trace amounts of Hg +2 ions in natural source of water. Chem Phys Lett 676:39–45. https://doi.org/10.1016/j.cplett.2017.03.046

    Article  CAS  Google Scholar 

  14. Singh R, Kashyap S, Singh V, Kayastha AM, Mishra H, Saxena PS, Srivastava A, Singh RK (2018) QPRTase modified N-doped carbon quantum dots: a fluorescent bioprobe for selective detection of neurotoxin quinolinic acid in human serum. Biosens Bioelectr 101:103–109. https://doi.org/10.1016/j.bios.2017.10.017

    Article  CAS  Google Scholar 

  15. Singh R, Yaday A, Shekhar S, Azad R, Singh RK, Kayastha AM (2019) Nitrogen Doped Carbon Quantum Dots Modified by Lens culinaris β-Galactosidase as a Fluorescent Probe for Detection of Lactose. J Fluoresc 29(3). https://doi.org/10.1007/s10895-019-02430-z

  16. Singh R, Singh RK (2020) Detection of malachite green in water using edge excited label free fluorescent probe NCQDs. J Fluoresc 30:1281–1285. https://doi.org/10.1007/s10895-020-02603-1

    Article  CAS  PubMed  Google Scholar 

  17. Singh R, Tiwari MK, Goutam J, Singh RK (2020) Spectroscopic studies of CDPy molecule in different protic and aprotic solvents and investigation of antioxidant property. J Fluoresc 30(6):1439–1446. https://doi.org/10.1007/s10895-020-02589-w

    Article  CAS  PubMed  Google Scholar 

  18. Sharma P, Gangopadhyay D, Mishra PC, Mishra H, Singh RK (2016) Detection of in vitro metabolite formation of leflunomide: a fluorescence dynamics and electronic structure study. J Med Chem 59(7):3418–3426. https://doi.org/10.1021/acs.jmedchem.6b00088

    Article  CAS  PubMed  Google Scholar 

  19. Esrafili MD, Nurazar R (2014) A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage. Superlattices and Microstructures, Elsevier 67:54–60. https://doi.org/10.1016/j.spmi.2013.12.020

    Article  CAS  Google Scholar 

  20. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  21. Dong L, Si-Jia W, Bo G, Lei S, Guang-Yue L (2021) Theoretical study on the sensing mechanism of a coumarin-based fluorescent probe for biological thiols. Spectrochim Acta Part A Mol Biomol Spectrosc 248:119268. https://doi.org/10.1016/j.saa.2020.119268

    Article  CAS  Google Scholar 

  22. Dong L, Lei S, Shu-Huan G, Yu-Heng W, Guang-Yue L, Can-Hua Z (2020) Twisted intramolecular charge transfer: A time-dependent density functional theory study on the sensing mechanism of a Schiff base sensor for fluoride. Chem Phys Lett 738:136894. https://doi.org/10.1016/j.cplett.2019.136894

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, in. Gaussian Inc, Wallingford, CT, USA

    Google Scholar 

  24. Govindarajan M, Karabacak M (2012) Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-Lutidine. Spectrochim Acta A Mol Biomol Spectrosc 96:421–435. https://doi.org/10.1016/j.saa.2012.05.067

    Article  CAS  PubMed  Google Scholar 

  25. Robinson JW, Frame EMS, Frame GM II (2004) Undergraduate Instrumental Analysis, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  26. Fleming I (1976) Frontier Orbitals and Organic Chemical Reactions. Wiley, London

    Google Scholar 

  27. Asiri AM, Karabacak M, Kurt M, Alamry KA (2011) Synthesis, molecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-methoxy-phenyl)-2-(4-nitro-phenyl)-acrylonitrile: a combined experimental and theoretical analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 82(1):444–455. https://doi.org/10.1016/j.saa.2011.07.076

    Article  CAS  Google Scholar 

  28. Kosar B, Albayrak C (2011) Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol. Spectrochim Acta A Mol Biomol Spectrosc 78(1):160–167. https://doi.org/10.1016/j.saa.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  29. Janeoo S, Saroa A, Rakesh Kumar R, Kaur H (2022) Computational investigation of bioactive 2,3-diaryl quinolines using DFT method: FT- IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum-chemical properties. J Mol Struct 1253:132285, ISSN 0022–2860. https://doi.org/10.1016/j.molstruc.2021.132285

  30. Rocha FS, Gomes AJ, Lunardi CN, Kaliaguine S, Patience GS (2018) Experimental methods in chemical engineering: ultraviolet visible spectroscopy—UV-Vis. Can J Chem Eng. https://doi.org/10.1002/cjce.23344

    Article  Google Scholar 

  31. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Plenum Press, New York and London Third Edition, pp 58–59

    Book  Google Scholar 

  32. Miles CI, Schenk GH (1970) Fluorescence of Acetylsalicylic Acid in Solution and Its Measurement in Presence of Salicylic Acid. Anal Chem 42(6):656–659. https://doi.org/10.1021/ac60288a032

    Article  CAS  PubMed  Google Scholar 

  33. Bo G, Bo-Yu L, Shou-Liang Y, Yue-Hua L, Guang-Yue L (2021) A time-dependent density functional theory study of a fluorescent probe to detect hydroxyl radicals: Inhibiting the twisted intramolecular charge-transfer process. Spectrochim Acta Part A Mol Biomol Spectrosc 260:119928. https://doi.org/10.1016/j.saa.2021.119928

    Article  CAS  Google Scholar 

  34. Gupta RC, Dwivedi SK, Ali R, Razi SS, Tiwari R, Krishnamoorthi S, Misra A (2020) A sensitive TICT Probe exhibiting ratiometric fluorescence repose to detect hydrazine in solution and gas phase. Spectrochimica Acta Part A 232:118153. https://doi.org/10.1016/j.saa.2020.11815

    Article  CAS  Google Scholar 

  35. Li Y, Chu TS (2017) DFT/TDDFT Study on the Sensing Mechanism of a Fluorescent Probe for Hydrogen Sulfide: Excited State Intramolecular Proton Transfer Coupled Twisted Intramolecular Charge Transfer. J Phys Chem A 121(28):5245–5256. https://doi.org/10.1021/acs.jpca.7b02606

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Qiao Q, Chi W, Chen J, Liu W, Tan D, McKechnie S, Lyu DA, Jiang X-F, Zhou W, Xu N, Zhang Q, Xu Z, Liu X (2020) Quantitative design of bright fluorophores and AIEgens by the accurate prediction of twisted intramolecular charge transfer. J German Chem Soc 59:10160–10172. https://doi.org/10.1002/anie.201916357

    Article  CAS  Google Scholar 

  37. Sasaki S, Drummen GPC, Konishi G (2016) Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of materials chemistry C 4:2731–2743. https://doi.org/10.1039/C5TC03933A

    Article  CAS  Google Scholar 

  38. Lv X, Gao C, Han T, Shi H, Guo W (2020) Improving the quantum yields of fluorophores by inhibiting twisted intramolecular charge transfer using electron-withdrawing group-functionalized piperidine auxochromes, Royal society of chemistry. Chem Commun 56:715–718. https://doi.org/10.1039/C9CC09138F

    Article  CAS  Google Scholar 

  39. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032. https://doi.org/10.1021/cr940745l

    Article  PubMed  Google Scholar 

  40. Georgieva I, Aquino AJA, Plasser F, Trendafilova N, Köhn A (2015) Intramolecular Charge-Transfer Excited-State Processes in 4-(N, N-Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State. J Phys Chem A 119(24):6232–6243. https://doi.org/10.1021/acs.jpca.5b03282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Denisov GS, Golubev NS, Schreiber VM, Shajakhmedov ShS, Shurukhina AV (1997) Effect of intermolecular hydrogen bonding and proton transfer on fluorescence of salicylic acid. Journal of Molecular Structure, Volumes 436–437:153–160. https://doi.org/10.1016/S0022-2860(97)00136-1

    Article  Google Scholar 

  42. Han C, Liu Y, Yang Y, Ni X, Lu J, Luo X (2009) Study on fluorescence spectra of molecular association of acetic acid-water. Chin Opt Lett 7(4):357–360

    Article  CAS  Google Scholar 

  43. Pang Y, Huang YK, Li F, Yangc FQ, **a ZN (2016) Rapid screening and evaluation of antioxidants in alkaloid natural products by capillary electrophoresis with chemiluminescence detection. Anal Methods 8:6545–6553. https://doi.org/10.1039/C6AY01518B

    Article  CAS  Google Scholar 

  44. Farr EP, Quintana JC, Reynoso V, Ruberry JD, Shin WR, Swartz KR (2018) Introduction to time-resolved spectroscopy: nanosecond transient absorption and time-resolved fluorescence of eosin B. J Chem Educ 95(5):864–871. https://doi.org/10.1021/acs.jchemed.7b00941

    Article  CAS  Google Scholar 

  45. Birch DJS, Imhof RE (2002). Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting. In: J.R. Lakowicz, (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-47057-8_1

  46. Grinvald A, Steinberg IZ (1974) On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem 59:583–598. https://doi.org/10.1016/0003-2697(74)90312-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Monalisha Nayak would like to acknowledge UGC New Delhi for providing non net fellowship. Prof Ranjan K Singh is thankful to DST- FIST programme, and ongoing BHU IOE scheme for financial support. Authors are thankful to Prof Amit Pathak for providing computational facility.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

Monalisha Nayak: Designing and execution of ideas for sample preparation, characterization, theoretical calculation as well as manuscript writing, Chandan Bhai Patel: Sample preparation, discussion of the results, review of the manuscript, Anurag Mishra: Experimental suggestion, Ranjana Singh: Ideas, experiments, results and discussion, manuscript writing. Ranjan K. Singh: Supervision for the experiment, result and discussion, manuscript writing, reviewing and editing.

Corresponding authors

Correspondence to Ranjana Singh or Ranjan K. Singh.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M., Patel, C.B., Mishra, A. et al. Unveiling the Influence of Glutathione in Suppressing the Conversion of Aspirin to Salicylic Acid: A Fluorescence and DFT Study. J Fluoresc 34, 1441–1451 (2024). https://doi.org/10.1007/s10895-024-03665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-024-03665-1

Keywords

Navigation