Log in

Synthesis of Fluorescent C–C Bonded Triazole-Purine Conjugates

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A design toward C–C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38–86% and 41–89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Below is the link to the electronic supporting information.

References

  1. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470. https://doi.org/10.1016/S0040-4039(00)91094-3

    Article  Google Scholar 

  2. Chinchilla R, Nájera C (2007) The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem Rev 107:874–922. https://doi.org/10.1021/cr050992x

    Article  CAS  PubMed  Google Scholar 

  3. Biffis A, Centomo P, Del Zotto A, Zecca M (2018) Pd Metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem Rev 118:2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443

    Article  CAS  PubMed  Google Scholar 

  4. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 nobel prize. Angew Chemie - Int Ed 51:5062–5085. https://doi.org/10.1002/anie.201107017

    Article  CAS  Google Scholar 

  5. Bag SS, Jana S, Kasula M (2018) Sonogashira cross-coupling: Alkyne-modified nucleosides and their applications. Elsevier Inc

  6. Hocek M (2003) Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C−C bond-forming reactions. Eur J Org Chem 2003:245–254. https://doi.org/10.1002/ejoc.200390025

    Article  Google Scholar 

  7. Agrofoglio LA, Gillaizeau I, Saito Y (2003) Palladium-assisted routes to nucleosides. Chem Rev 103:1875–1916. https://doi.org/10.1021/cr010374q

    Article  CAS  PubMed  Google Scholar 

  8. Manvar A, Shah A (2013) Microwave-assisted chemistry of purines and xanthines. An overview Dedicated to the late Professor V.M. Thakor on his 94th birthday. Tetrahedron 69:8105–8127. https://doi.org/10.1016/j.tet.2013.06.034

    Article  CAS  Google Scholar 

  9. Fang X, Gao Q, Zhang W et al (2020) Multisensing emissive 8-phenylethynylated 2′-deoxyadenosines and 2′-deoxyisoguanosines. Tetrahedron 76:8–16. https://doi.org/10.1016/j.tet.2019.130795

    Article  CAS  Google Scholar 

  10. Ibrahim N, Chevot F, Legraverend M (2011) Regioselective Sonogashira cross-coupling reactions of 6-chloro-2,8-diiodo- 9-THP-9H-purine with alkyne derivatives. Tetrahedron Lett 52:305–307. https://doi.org/10.1016/j.tetlet.2010.11.033

    Article  CAS  Google Scholar 

  11. Malthum S, Polkam N, Allaka TR et al (2017) Synthesis, characterization and biological evaluation of purine nucleoside analogues. Tetrahedron Lett 58:4166–4168. https://doi.org/10.1016/j.tetlet.2017.09.041

    Article  CAS  Google Scholar 

  12. Bilbao N, Vázquez-González V, Aranda MT, González-Rodríguez D (2015) Synthesis of 5-/8-halogenated or ethynylated lipophilic nucleobases as potential synthetic intermediates for supramolecular chemistry. Eur J Org Chem 2015:7160–7175. https://doi.org/10.1002/ejoc.201501026

    Article  CAS  Google Scholar 

  13. Sedláček O, Břehová P, Pohl R et al (2011) The synthesis of the 8-C-substituted 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP) derivatives by diverse cross-coupling reactions. Can J Chem 89:488–498. https://doi.org/10.1139/V11-001

    Article  CAS  Google Scholar 

  14. Nagy A, Kotschy A (2008) Synthesis of 6-ethynylpurine derivatives. Tetrahedron Lett 49:3782–3784. https://doi.org/10.1016/j.tetlet.2008.04.011

    Article  CAS  Google Scholar 

  15. Křováček M, Dvořáková H, Votruba I et al (2011) 6-Alkynylpurines bearing electronacceptor substituents: Preparation, reactivity in cycloaddition reactions and cytostatic activity. Collect Czechoslov Chem Commun 76:1487–1527. https://doi.org/10.1135/cccc2011176

    Article  CAS  Google Scholar 

  16. Buchanan HS, Pauff SM, Kosmidis TD et al (2017) Modular, step-efficient palladium-catalyzed cross-coupling strategy to access C6-heteroaryl 2-aminopurine ribonucleosides. Org Lett 19:3759–3762. https://doi.org/10.1021/acs.orglett.7b01602

    Article  CAS  PubMed  Google Scholar 

  17. Mathew SC, By Y, Berthault A et al (2010) Expeditious synthesis and biological evaluation of new C-6 1,2,3-triazole adenosine derivatives A1 receptor antagonists or agonists. Org Biomol Chem 8:3874–3881. https://doi.org/10.1039/c0ob00017e

    Article  CAS  PubMed  Google Scholar 

  18. Cosyn L, Palaniappan KK, Kim S-K et al (2006) 2-triazole-substituted adenosines: a new class of selective A3 adenosine receptor agonists, partial agonists, and antagonists. J Med Chem 49:7373–7383. https://doi.org/10.1021/jm0608208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tosh DK, Chinn M, Yoo LS et al (2010) 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: “Clickable” A3 adenosine receptor-selective agonists. Bioorganic Med Chem 18:508–517. https://doi.org/10.1016/j.bmc.2009.12.018

    Article  CAS  Google Scholar 

  20. Luan F, Melo A, Borges F, Cordeiro MNDS (2011) Affinity prediction on A3 adenosine receptor antagonists: The chemometric approach. Bioorganic Med Chem 19:6853–6859. https://doi.org/10.1016/j.bmc.2011.09.032

    Article  CAS  Google Scholar 

  21. Matsuda a, Shinozaki M, Yamaguchi T, et al (1992) Nucleosides and nucleotides. 103. 2-Alkynyladenosines: a novel class of selective adenosine A2 receptor agonists with potent antihypertensive effects. J Med Chem 35:241–252

    Article  PubMed  Google Scholar 

  22. Sági G, Ötvös L, Ikeda S et al (1994) Synthesis and antiviral activities of 8-alkynyl-, 8-alkenyl-, and 8-alkyl-2′-deoxyadenosine analogs. J Med Chem 37:1307–1311. https://doi.org/10.1021/jm00035a010

    Article  PubMed  Google Scholar 

  23. He X, Kuang S, Gao Q et al (2022) Bright fluorescent purine analogues as promising probes. Nucleosides Nucleotides Nucleic Acids 41:45–60. https://doi.org/10.1080/15257770.2021.2004418

    Article  CAS  PubMed  Google Scholar 

  24. Okamura H, Trinh GH, Dong Z et al (2022) Selective and stable base pairing by alkynylated nucleosides featuring a spatially-separated recognition interface. Nucleic Acids Res 50:3042–3055. https://doi.org/10.1093/nar/gkac140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Da XC, He ZY, Guo CX et al (2020) Conformation of G-quadruplex controlled by click reaction. Molecules 25:1–8. https://doi.org/10.3390/molecules25184339

    Article  CAS  Google Scholar 

  26. Creech C, Kanaujia M, Causey CP (2015) Synthesis and evaluation of 2-ethynyl-adenosine-5′-triphosphate as a chemical reporter for protein AMPylation. Org Biomol Chem 13:8550–8555. https://doi.org/10.1039/c5ob01081k

    Article  CAS  PubMed  Google Scholar 

  27. Kele P, Li X, Link M et al (2009) Clickable fluorophores for biological labeling - with or without copper. Org Biomol Chem 7:3486–3490. https://doi.org/10.1039/b907741c

    Article  CAS  PubMed  Google Scholar 

  28. Redwan IN, Bliman D, Tokugawa M et al (2013) Synthesis and photophysical characterization of 1- and 4-(purinyl)triazoles. Tetrahedron 69:8857–8864. https://doi.org/10.1016/j.tet.2013.08.023

    Article  CAS  Google Scholar 

  29. Dyrager C, Börjesson K, Dinér P et al (2009) Synthesis and photophysical characterisation of fluorescent 8-(1 H-1,2,3-triazol-4-yl)adenosine derivatives. Eur J Org Chem 1515–1521. https://doi.org/10.1002/ejoc.200900018

  30. Dierckx A, Dinér P, El-Sagheer AH et al (2011) Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Res 39:4513–4524. https://doi.org/10.1093/nar/gkr010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Mahony G, Ehrman E, Grøtli M (2005) Synthesis of adenosine-based fluorosides containing a novel heterocyclic ring system. Tetrahedron Lett 46:6745–6748. https://doi.org/10.1016/j.tetlet.2005.07.115

    Article  CAS  Google Scholar 

  32. Pettersson M, Bliman D, Jacobsson J et al (2015) 8-Triazolylpurines: Towards fluorescent inhibitors of the MDM2/p53 interaction. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0124423

    Article  CAS  Google Scholar 

  33. Kovaļovs A, Novosjolova I, Bizdēna Ē et al (2013) 1,2,3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof. Tetrahedron Lett 54:850–853. https://doi.org/10.1016/j.tetlet.2012.11.095

    Article  CAS  Google Scholar 

  34. Šišuļins A, Bucevičius J, Tseng Y-T et al (2019) Synthesis and fluorescent properties of N(9)-alkylated 2-amino-6-triazolylpurines and 7-deazapurines. Beilstein J Org Chem 15:474–489. https://doi.org/10.3762/bjoc.15.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jovaisaite J, Cīrule D, Jeminejs A et al (2020) Proof of principle of a purine D-A-D′ ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Phys Chem Chem Phys 22:26502–26508. https://doi.org/10.1039/d0cp04091f

    Article  CAS  PubMed  Google Scholar 

  36. Sebris A, Traskovskis K, Novosjolova I, Turks M (2021) Synthesis and photophysical properties of 2-azolyl-6-piperidinylpurines. Chem Heterocycl Compd 57:560–567. https://doi.org/10.1007/s10593-021-02943-1

    Article  CAS  Google Scholar 

  37. Sebris A, Novosjolova I, Traskovskis K et al (2022) Photophysical and electrical properties of highly luminescent 2/6-triazolyl-substituted push-pull purines. ACS Omega 7:5242–5253. https://doi.org/10.1021/acsomega.1c06359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Novosjolova I, Bizdēna Ē, Turks M (2013) Application of 2,6-diazidopurine derivatives in the synthesis of thiopurine nucleosides. Tetrahedron Lett 54:6557–6561. https://doi.org/10.1016/j.tetlet.2013.09.095

    Article  CAS  Google Scholar 

  39. Cīrule D, Novosjolova I, Bizdēna Ē, Turks M (2021) 1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles. Beilstein J Org Chem 17:410–419. https://doi.org/10.3762/bjoc.17.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kriķis KE, Novosjolova I, Mishnev A, Turks M (2021) 1,2,3-Triazoles as leaving groups in SNAr-Arbuzov reactions: Synthesis of C6-phosphonated purine derivatives. Beilstein J Org Chem 17:193–202. https://doi.org/10.3762/BJOC.17.19

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kapilinskis Z, Novosjolova I, Turks M (2018) Purine-furan and purine-thiophene conjugates. Molbank. https://doi.org/10.3390/M1024

    Article  Google Scholar 

  42. Kim HS, Barak D, Harden TK et al (2001) Acyclic and cyclopropyl analogues of adenosine bisphosphate antagonists of the P2Y1 receptor: Structure-activity relationships and receptor docking. J Med Chem 44:3092–3108. https://doi.org/10.1021/jm010082h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lv J, Luo T, Zou D, Dong H (2019) Using DMF as both a catalyst and cosolvent for the regioselective silylation of polyols and diols. Eur J Org Chem 2019:6383–6395. https://doi.org/10.1002/ejoc.201901195

    Article  CAS  Google Scholar 

  44. Hellerman L (1927) The preparation of β-triphenylethylamine. Rearrangement of β-triphenylpropionhydroxamic acid. J Am Chem Soc 49:1735–1742. https://doi.org/10.1021/ja01406a013

    Article  CAS  Google Scholar 

  45. Traskovskis K, Mihailovs I, Tokmakovs A et al (2012) Triphenyl moieties as building blocks for obtaining molecular glasses with nonlinear optical activity. J Mater Chem 22:11268–11276. https://doi.org/10.1039/c2jm30861d

    Article  CAS  Google Scholar 

  46. Traskovskis K, Ruduss A, Kokars V et al (2019) Thiphenylmethane based structural fragments as building blocks towards solution-processable heteroleptic iridium(III) complexes for OLED use. New J Chem 43:37–47. https://doi.org/10.1039/c8nj04484h

    Article  CAS  Google Scholar 

  47. Glaser C (1869) Beitrage zur Kenntnifs des Acetenylbenzols. Ber Dtsch Chem Ges 2:422–424

    Article  Google Scholar 

  48. Glaser C (1870) Untersuchungen über einige Derivate der Zimmtsäure. Justus Liebigs Ann Chem 154:137–171. https://doi.org/10.1002/jlac.18701540202

    Article  Google Scholar 

  49. Sindhu KS, Anilkumar G (2014) Recent advances and applications of Glaser coupling employing greener protocols. RSC Adv 4:27867–27887. https://doi.org/10.1039/c4ra02416h

    Article  CAS  Google Scholar 

  50. Alvarez SG, Alvarez MT (1997) A Practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis (Stuttg) 1997:413–414. https://doi.org/10.1055/s-1997-1206

    Article  Google Scholar 

  51. Barral K, Moorhouse AD, Moses JE (2007) Efficient conversion of aromatic amines into azides: A one-pot synthesis of triazole linkages. Org Lett 9:1809–1811. https://doi.org/10.1021/ol070527h

    Article  CAS  PubMed  Google Scholar 

  52. Zhang D, Fan Y, Yan Z et al (2019) Reactions of α-haloacroleins with azides: Highly regioselective synthesis of formyl triazoles. Green Chem 21:4211–4216. https://doi.org/10.1039/c9gc01129c

    Article  CAS  Google Scholar 

  53. Vereshchagin LI, Kizhnyaev VN, Verkhozina ON et al (2004) Synthesis of polycyclic functionally-substituted triazole- and tetrazole-containing systems. Russ J Org Chem 40:1156–1161. https://doi.org/10.1023/B:RUJO.0000045898.10072.7f

    Article  CAS  Google Scholar 

  54. Schmitz J, Li T, Bartz U, Gütschow M (2016) Cathepsin B inhibitors: combining dipeptide nitriles with an occluding loop recognition element by click chemistry. ACS Med Chem Lett 7:211–216. https://doi.org/10.1021/acsmedchemlett.5b00474

    Article  CAS  PubMed  Google Scholar 

  55. Schulz A, Thomas M, Villinger A (2019) Tetrazastannoles versus distannadiazanes-a question of the tin(ii) source. Dalt Trans 48:125–132. https://doi.org/10.1039/C8DT04295K

    Article  CAS  Google Scholar 

  56. Gribanov PS, Topchiy MA, Golenko YD et al (2016) An unprecedentedly simple method of synthesis of aryl azides and 3-hydroxytriazenes. Green Chem 18:5984–5988. https://doi.org/10.1039/c6gc02379g

    Article  CAS  Google Scholar 

  57. Verkhozina ON, Kizhnyaev VN, Vereshchagin LI et al (2003) Synthesis of polynuclear nonfused azoles. Russ J Org Chem 39:1792–1796. https://doi.org/10.1023/B:RUJO.0000019746.10504.f3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Latvia-Lithuania-Taiwan joint grant “Molecular Electronics in functionalized Purines: fundamental Study and applications (MEPS)” for financial support and Dr. chem. Kristine Lazdoviča for IR analysis. A.B. thanks the European Social Fund within Project No. 8.2.2.0/20/I/008 “Strengthening of PhD students and academic personnel of Riga Technical University and BA School of Business and Finance in the strategic fields of specialization”.

Funding

The Latvia-Lithuania-Taiwan joint grant “Molecular Electronics in functionalized Purines: fundamental Study and applications (MEPS)”. The European Social Fund within Project No. 8.2.2.0/20/I/008.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and I.N. contributed to the study conception and design, and supervision. A.B. and A.S. performed the synthesis and analysis of purine derivatives, and wrote the experimental part. K.T., J.J. and S.J. performed the photophysical studies and analysis of data. H.W.C. and H.T.C. performed cytotoxicity experiments and analysis. The first draft of the manuscript was written by I.N. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Irina Novosjolova.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing financial or personal interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43196 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burcevs, A., Sebris, A., Traskovskis, K. et al. Synthesis of Fluorescent C–C Bonded Triazole-Purine Conjugates. J Fluoresc 34, 1091–1097 (2024). https://doi.org/10.1007/s10895-023-03337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03337-6

Keywords

Navigation