Log in

Structural and optical studies of molybdenum oxides thin films obtained by thermal evaporation and atomic layer deposition methods for photovoltaic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MoOX (X < 3) has shown its promising potential as an efficient hole-selective passivating contact in crystalline Si solar cells. The device performance highly depends on the film properties of MoOX film, which is significantly affected by different synthesis methods. In this work, Si solar cells with c-Si(p)/MoOX rear contacts were demonstrated, where the MoOX films were realized by thermal evaporation (TE), atomic layer deposition (ALD), and UV-assisted ALD (UV-ALD) methods. A pronounced efficiency drop was disclosed with the order of TE, ALD, and UV-ALD MoOX. Subsequently, the contact propertieis, crystallinity, chemical states, roughness, density, and refractive indices of MoOX films were systematically characterized by a series of microscopic and spectroscopic analyses. It is found that the TE film is composed of nanocrystals, while ALD methods yield amorphous feature with a smaller density and refractive indices. A mild UV illumination (3.5 mW/cm2) slightly reduces the film roughness, while a stronger (35 mW/cm2) one increases the film density, roughness, and growth rate significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that materials described in the paper, including all relevant raw data, will be freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. C. Battaglia, S.M. de Nicolas, S. De Wolf et al., Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014)

    Article  Google Scholar 

  2. J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014)

    Article  Google Scholar 

  3. J. Dreon, Q. Jeangros, J. Cattin et al., 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020)

    Article  CAS  Google Scholar 

  4. E.M. Sanehira, B.J.T. de Villers, P. Schulz et al., Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38–45 (2016)

    Article  CAS  Google Scholar 

  5. X.G. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)

    Article  CAS  Google Scholar 

  6. Y.L. Zou, R.J. Holmes, Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells. Appl. Phys. Lett. 103, 138 (2013)

    Article  Google Scholar 

  7. C. Battaglia, X. Yin, M. Zheng et al., Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014)

    Article  CAS  Google Scholar 

  8. J. Melskens, B.W. van de Loo, B. Macco, L.E. Black, S. Smit, W. Kessels, Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J. Photovolt. 8, 373–388 (2018)

    Article  Google Scholar 

  9. S. Cao, J. Li, J. Zhang et al., Stable MoOX-based heterocontacts for p-type crystalline silicon solar cells achieving 20% efficiency. Adv. Funct. Mater. 30, 2004367 (2020)

    Article  CAS  Google Scholar 

  10. S.Y. Cao, J.Y. Li, Y.Y. Lin et al., Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOX/metal contacts. Solar RRL. 3, 1900274 (2019)

    Article  CAS  Google Scholar 

  11. S. Ashraf, C.S. Blackman, G. Hyett, I.P. Parkin, Aerosol assisted chemical vapour deposition of MoO(3) and MoO(2) thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. J. Mater. Chem. 16, 3575–3582 (2006)

    Article  CAS  Google Scholar 

  12. V. Nirupama, M.C. Sekhar, T.K. Subramanyam, S. Uthanna, Structural and electrical characterization of magnetron sputtered MoO3 thin films. J. Phys. Conf. Ser. 208, 012101 (2010)

    Article  Google Scholar 

  13. S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films. Sens. Actuators B-Chem. 94, 189–196 (2003)

    Article  CAS  Google Scholar 

  14. M. Diskus, O. Nilsen, H. Fjellvag, Growth of thin films of molybdenum oxide by atomic layer deposition. J. Mater. Chem. 21, 705–710 (2011)

    Article  CAS  Google Scholar 

  15. K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selbach, A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C. 120, 8959–8968 (2016)

    Article  CAS  Google Scholar 

  16. K. Khojier, H. Savaloni, S. Zolghadr, On the dependence of structural and sensing properties of sputtered MoO3 thin films on argon gas flow. Appl. Surf. Sci. 320, 315–321 (2014)

    Article  CAS  Google Scholar 

  17. E. McCarron III., J. Calabrese, The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J. Solid State Chem. 91, 121–125 (1991)

    Article  CAS  Google Scholar 

  18. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C. 114, 4636–4645 (2010)

    Article  CAS  Google Scholar 

  19. V. Cremers, R.L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: current status overview of analysis and modelling. Appl. Phys. Rev. 6, 021302 (2019)

    Article  Google Scholar 

  20. B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, Silicon surface passivation by atomic layer deposited Al2O3. J. Appl. Phys. 104, 044903 (2008)

    Article  Google Scholar 

  21. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, A. Vermeer, High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010)

    Article  CAS  Google Scholar 

  22. B. O'donnell, The weekend read: atomic layer deposition storms market for PERC. https://www.pv-magazine.com/2019/06/29/the-weekend-read-atomic-layer-deposition-storms-market-for-perc/ (2019)

  23. X. Yang, K. Weber, Z. Hameiri, S. De Wolf, Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog. Photovolt. 25, 896–904 (2017)

    Article  CAS  Google Scholar 

  24. H. Kim, Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films 519, 6639–6644 (2011)

    Article  CAS  Google Scholar 

  25. C. Detavernier, J. Dendooven, D. Deduytsche, J. Musschoot, Thermal versus plasma-enhanced ALD: growth kinetics and conformality. ECS Trans. 16, 239–246 (2008)

    Article  CAS  Google Scholar 

  26. K.-M. Kim, J.S. Jang, S.-G. Yoon, J.-Y. Yun, N.-K. Chung, Structural, optical and electrical properties of HfO2 thin films deposited at low-temperature using plasma-enhanced atomic layer deposition. Materials 13, 2008 (2020)

    Article  CAS  Google Scholar 

  27. X.B. Yang, E. Aydin, H. Xu et al., Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 8, 1800608 (2018)

    Article  Google Scholar 

  28. P.O. Oviroh, R. Akbarzadeh, D.Q. Pan, R.A.M. Coetzee, T.C. Jen, New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20, 465–496 (2019)

    Article  Google Scholar 

  29. J. Ziegler, M. Mews, K. Kaufmann et al., Plasma-enhanced atomic-layer-deposited MoO(x) emitters for silicon heterojunction solar cells. Appl. Phys. A-Mater. 120, 811–816 (2015)

    Article  CAS  Google Scholar 

  30. P.R. Chalker, Photochemical atomic layer deposition and etching. Surf. Coat. Technol. 291, 258–263 (2016)

    Article  CAS  Google Scholar 

  31. K.J. Yuan, R.N. Dixon, X.M. Yang, Photochemistry of the water molecule: adiabatic versus nonadiabatic dynamics. Acc. Chem. Res. 44, 369–378 (2011)

    Article  CAS  Google Scholar 

  32. T. Iimori, K. Hattori, K. Shudo, T. Iwaki, M. Ueta, F. Komori, Laser-induced mono-atomic-layer etching on Cl-adsorbed Si(111) surfaces. Appl. Surf. Sci. 130, 90–95 (1998)

    Article  Google Scholar 

  33. B.H. Lee, S. Cho, J.K. Hwang, S.H. Kim, M.M. Sung, UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature. Thin Solid Films 518, 6432–6436 (2010)

    Article  CAS  Google Scholar 

  34. S.K. Kim, S. Hoffmann-Eifert, R. Waser, High growth rate in atomic layer deposition of TiO2 thin films by UV irradiation. Electrochem. Solid State 14, H146 (2011)

    Article  CAS  Google Scholar 

  35. K.H. Yoon, H. Kim, Y.-E.K. Lee, N.K. Shrestha, M.M. Sung, UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers. RSV Adv. 7, 5601–5609 (2017)

    Article  CAS  Google Scholar 

  36. W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publication, New Jersey, 1993), pp. 111–196

    Google Scholar 

  37. T. Zhang, C.Y. Lee, Y.M. Wan, S. Lim, B. Hoex, Investigation of the thermal stability of MoOx as hole-selective contacts for Si solar cells. J. Appl. Phys. 124, 073106 (2018)

    Article  Google Scholar 

  38. H.C. Card, Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electr. Devices. 23, 538–544 (1976)

    Article  Google Scholar 

  39. R. Cox, H. Strack, Ohmic contacts for GaAs devices. Solid-State Electron. 10, 1213–1218 (1967)

    Article  Google Scholar 

  40. B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29, 2024–2032 (2017)

    Article  CAS  Google Scholar 

  41. J.R. Creighton, Photodecomposition of Mo(Co)6 adsorbed on Si(100). J. Appl. Phys. 59, 410–414 (1986)

    Article  CAS  Google Scholar 

  42. D. **ang, C. Han, J. Zhang, W. Chen, Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep.-UK 4, 4891 (2014)

    Article  CAS  Google Scholar 

  43. D. Sacchetto, Q. Jeangros, G. Christmann et al., ITO/MoOx/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration. IEEE J. Photovolt. 7, 1584–1590 (2017)

    Article  Google Scholar 

  44. F. Menchini, L. Serenelli, L. Martini et al., Transparent hole-collecting and buffer layers for heterojunction solar cells based on n-type-doped silicon. Appl. Phys. A 124, 489 (2018)

    Article  Google Scholar 

  45. T. Dai, Y. Ren, L. Qian, X. Liu, Characterization of molybdenum oxide thin films grown by atomic layer deposition. J. Electron Mater. 47, 6709–6715 (2018)

    Article  CAS  Google Scholar 

  46. Y.T. Chua, P.C. Stair, I.E. Wachs, A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J. Phys. Chem. B 105, 8600–8606 (2001)

    Article  CAS  Google Scholar 

  47. R. Murugan, A. Ghule, C. Bhongale, H. Chang, Thermo-Raman investigations on structural transformations in hydrated MoO3. J. Mater. Chem. 10, 2157–2162 (2000)

    Article  CAS  Google Scholar 

  48. J. Li, T. Pan, J. Wang et al., Bilayer MoOX/CrOX passivating contact targeting highly stable silicon heterojunction solar cells. ACS Appl. Mater. Interface. 12, 36778–36786 (2020)

    Article  CAS  Google Scholar 

  49. A. Piegari, F. Flory, Optical Thin Films and Coatings 2nd Edition: From Materials to Applications (Woodhead Publishing, Sawston, 2018).

    Google Scholar 

  50. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. today. 17, 236–246 (2014)

    Article  CAS  Google Scholar 

  51. B. Yang, Y. Chen, Y. Cui, D.L. Liu, B.W. Xu, J.H. Hou, Over 100-nm-thick MoOx films with superior hole collection and transport properties for organic solar cells. Adv. Energy Mater. 8, 1800698 (2018)

    Article  Google Scholar 

  52. Z. Zhang, Y. **ao, H.X. Wei et al., Impact of oxygen vacancy on energy-level alignment at MoOx/organic interfaces. Appl. Phys. Express. 6, 095701 (2013)

    Article  Google Scholar 

  53. O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques. AIMS Mater. Sci. 6, 174–199 (2019)

    Article  CAS  Google Scholar 

  54. B. Macco, M. Vos, N. Thissen, A. Bol, W. Kessels, Low-temperature atomic layer deposition of MoOx for silicon heterojunction solar cells. Phys Status Solidi (RRL). 9, 393–396 (2015)

    Article  CAS  Google Scholar 

  55. T. Sun, R. Wang, R. Liu et al., Investigation of MoOx/n-Si strong inversion layer interfaces via dopant-free heterocontact. Phys. Status Solidi (RRL). 11, 1700107 (2017)

    Article  Google Scholar 

  56. R. Wang, Y. Wang, C. Wu et al., Direct observation of conductive polymer induced inversion layer in n-Si and correlation to solar cell performance. Adv. Funct. Mater. 30, 1903440 (2020)

    Article  CAS  Google Scholar 

  57. M. Yasaka, X-ray thin-film measurement techniques. Rigaku J. 26, 1–9 (2010)

    CAS  Google Scholar 

  58. T.C. Huang, R. Gilles, G. Will, Thin-film thickness and density determination from X-ray reflectivity data using a conventional power diffractometer. Thin Solid Films 230, 99–101 (1993)

    Article  CAS  Google Scholar 

  59. D. Aggarwal, Frequency analysis of X-ray reflectivity data by FFT (Enrollment No: A4450014016), Master dissertation, Amity University (2016)

  60. M.J. Jeong, Y.J. Jo, S.H. Lee et al., Heterojunction solar cell with carrier selective contact using MoOx deposited by atomic layer deposition. Korean J. Mater. Res. 29, 322–327 (2019)

    Article  Google Scholar 

  61. Z. Hussain, Thermo optical properties and related electronic polarizabilities of MoO3 thin films using ellipsometry. AJEAS 12, 90–110 (2019)

    Google Scholar 

  62. M. Khardani, M. Bouaïcha, B. Bessaïs, Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment. Phys. Status Solidi C 4, 1986–1990 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61622407), Science & Technology Commission of Shanghai Municipality (19ZR1479100), the Shanxi Science and Technology Department (20201101012), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2019287).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TP and DL. Data curation: TP. Formal Analysis: TP and DL. Funding acquisition: DL. Investigation: TP. Methodology: TP. Project administration: DL. Resources: ZX, ZD, and DL. Software: TP. Supervision: DL. Validation: YL. Visualization: JL and YL. Writing—original draft: TP and JL. Writing—review & editing: DL.

Corresponding author

Correspondence to Dongdong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, T., Li, J., Lin, Y. et al. Structural and optical studies of molybdenum oxides thin films obtained by thermal evaporation and atomic layer deposition methods for photovoltaic application. J Mater Sci: Mater Electron 32, 3475–3486 (2021). https://doi.org/10.1007/s10854-020-05094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05094-9

Navigation