Log in

Interface study of molybdenum oxide thin films on n- and p-type crystalline silicon surface

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the interface analysis of n- and p-type crystalline silicon with molybdenum oxide (MoOx) thin film for its application as a carrier selective layer has been presented. Sub-stoichiometric MoOx thin films were grown on glass and n-Si and p-Si substrates by DC reactive sputtering using molybdenum target in pure Ar + O2 gas ambient at room temperature for 20 min at 60 W DC power. The optical properties were studied using UV–Vis-NIR spectroscopy and the films showed an optical transmittance > 70% in the visible spectrum with an optical band gap of 3.23 eV. FTIR and XPS studies showed the presence of mixed phases of sub-stoichiometric MoOx in the deposited film. The interface study was done using the capacitance-voltage (C-V) measurement of Al/MoOx/Si/Al structure at different frequencies. Density of interface traps was found to be of the order of 1012 cm−3 for both n- and p-Si. The barrier heights of approximately 0.65 eV and 0.52 eV were calculated from current-voltage (I-V) measurements for n- and p-Si, respectively. The I-V results demonstrated a good rectifying characteristics with enhanced barrier height for n-Si as compared to p-Si for its application as interfacial layers in silicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. T.G. Allen, J. Bullock, X. Yang, A. Javey, S. De Wolf, Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914 (2019). https://doi.org/10.1038/s41560-019-0463-6

    Article  CAS  Google Scholar 

  2. A.M. Douvas, M. Vasilopoulou, D.G. Georgiadou, A. Soultati, D. Davazoglou, N. Vourdas, K.P. Giannakopoulos, A.G. Kontos, S. Kennouc, P. Argitis, Sol-gel synthesized, low-temperature processed, reduced molybdenum peroxides for organic optoelectronics applications. J. Mater. Chem. C 2, 6290 (2014). https://doi.org/10.1039/c4tc00301b

    Article  CAS  Google Scholar 

  3. A.L.F. Cauduro, R. Reis, G. Chen, A.K. Schmid, C. Méthivier, H.G. Rubahn, L.B. Giannesini, H. Cruguel, N. Witkowski, M. Madsen, Crystalline molybdenum oxide thin-films for application as interfacial layers in optoelectronic devices. ACS Appl. Mater. Interfaces 9, 7717 (2017). https://doi.org/10.1021/acsami.6b14228

    Article  CAS  Google Scholar 

  4. R. Yordanov, S. Boyadjiev, V. Georgieva, L. Vergov, Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications. J. Phys. Conf. Ser. 514, 012040 (2014). https://doi.org/10.1088/1742-6596/514/1/012040

    Article  CAS  Google Scholar 

  5. S. Tomer, A. Kumar, M. Devi, Vandana, ALD deposited bipolar HfOx films for silicon surface passivation. Surfaces Interfaces 41, 103208 (2023). https://doi.org/10.1016/j.surfin.2023.10320

    Article  CAS  Google Scholar 

  6. N. Batra, J. Gope, Vandana, J. Panigrahi, R. Singh, P.K. Singh, Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation. AIP Adv. (2015). https://doi.org/10.1063/1.4922267

    Article  Google Scholar 

  7. J. Panigrahi, Vandana, R. Singh, C.M.S. Rauthan, P.K. Singh, Crystalline silicon surface passivation by thermal ALD deposited Al doped ZnO thin films. AIP Adv. (2017). https://doi.org/10.1063/1.4979326

    Article  Google Scholar 

  8. K. Mallem, Y.J. Kim, S.Q. Hussain, S. Dutta, A.H.T. Le, M. Ju, J. Park, Y.H. Cho, Y. Kim, E.-C. Cho, J. Yi, Molybdenum oxide: a superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 110, 90 (2019). https://doi.org/10.1016/j.materresbull.2018.10.018

    Article  CAS  Google Scholar 

  9. M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34 (2015). https://doi.org/10.1016/j.solmat.2015.05.031

    Article  CAS  Google Scholar 

  10. L.G. Gerling, G. Masmitja, C. Voz, P. Ortega, J. Puigdollers, R. Alcubilla, Back junction n-type silicon heterojunction solar cells with V2O5 hole-selective contact. Energy Procedia 92, 633 (2016). https://doi.org/10.1016/j.egypro.2016.07.029

    Article  CAS  Google Scholar 

  11. Z. Hussain, Optical and electrochromic properties of heated and annealed MoO3 thin films. J. Mater. Res. 16, 2695 (2001). https://doi.org/10.1557/JMR.2001.0369

    Article  CAS  Google Scholar 

  12. C.S. Hsu, C.C. Chan, H.T. Huang, C.H. Peng, W.C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films. Thin Solid Films 516, 4839 (2008). https://doi.org/10.1016/j.tsf.2007.09.019

    Article  CAS  Google Scholar 

  13. M. Rabizadeh, M.H. Ehsani, M.M. Shahidi, Tuning of physical properties in MoO3 thin films deposited by DC sputtering. Opt. Quantum Electron. 53, 1 (2021). https://doi.org/10.1007/s11082-021-03360-6

    Article  CAS  Google Scholar 

  14. J. Bullock, D. Yan, A. Cuevas, Y. Wan, C. Samundsett, N- and p-typesilicon solar cells with molybdenum oxide hole contacts. Energy Procedia 77, 446 (2015). https://doi.org/10.1016/j.egypro.2015.07.063

    Article  CAS  Google Scholar 

  15. J. Geissbuhler, J. Werner, S.M. de Nicolas, L. Barraud, A.H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107, 8 (2015). https://doi.org/10.1063/1.4928747

    Article  CAS  Google Scholar 

  16. M. Mattinen, P.J. King, L. Khriachtchev, M.J. Heikkil, B. Fleming, S. Rushworth, K. Mizohata, K. Meinander, J. Raisanen, M. Ritala, M. Leskel, Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing. Mater. Today Chem. 9, 17 (2018). https://doi.org/10.1016/j.mtchem.2018.04.005

    Article  CAS  Google Scholar 

  17. E. Bobeico, L.V. Mercaldo, P. Morvillo, I. Usatii, M.D. Noce, L. Lancellotti, C. Sasso, R. Ricciardi, P.D. Veneri, Evaporated MoOx as general back-side hole collector for solar cells. Coatings 10, 1 (2020). https://doi.org/10.3390/COATINGS10080763

    Article  Google Scholar 

  18. R.S. Patil, M.D. Uplane, P.S. Patil, Structural and optical properties of electrodeposited molybdenum oxide thin films. Appl. Surf. Sci. 252, 8050 (2006). https://doi.org/10.1016/j.apsusc.2005.10.016

    Article  CAS  Google Scholar 

  19. A.M. Mansour, S.A. Gad, A.M. Moustafa, G.M. Mahmoud, Structural, morphological, and optical characterization of MoO3 thin films and MoO3/p-Si based diode. SILICON 14, 2189 (2022). https://doi.org/10.1007/s12633-021-01014-6

    Article  CAS  Google Scholar 

  20. S. Kumari, K. Singh, P. Singh, S. Kumar, A. Thakur, Thickness dependent structural, morphological and optical properties of molybdenum oxide thin films. SN Appl. Sci. 2, 1 (2020). https://doi.org/10.1007/s42452-020-3193-2

    Article  CAS  Google Scholar 

  21. I. Minoru, H. Kousuke, O. Shuji, Optical properties and electronic structures of layered MoO3 single crystals. J. Phys. Condens. Matter 13, 6853 (2001)

    Article  Google Scholar 

  22. S. Subbarayudu, V. Madhavi, S. Uthanna, Growth of MoO3 films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. ISRN Condens. Matter Phys. 2013, 1 (2013). https://doi.org/10.1155/2013/806374

    Article  CAS  Google Scholar 

  23. S. Tomer, M. Devi, A. Kumar, S. Laxmi, S. Satapathy, K.K. Maurya, P. Singh, P. Pathi, Vandana, High-quality silicon surface passivation by thermal-ALD deposited hafnium oxide films. IEEE J. Photovoltaics (2023). https://doi.org/10.1109/JPHOTOV.2023.3295876

    Article  Google Scholar 

  24. J. Piscator, B. Raeissi, O. Engström, The conductance method in a bottom-up approach applied on hafnium oxide/silicon interfaces. Appl. Phys. Lett. 94, 2 (2009). https://doi.org/10.1063/1.3138125

    Article  CAS  Google Scholar 

  25. V. Nirupama, K.R. Gunasekhar, B. Sreedhar, S. Uthanna, Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films. Curr. Appl. Phys. 10, 272 (2010). https://doi.org/10.1016/j.cap.2009.06.005

    Article  Google Scholar 

  26. C.V. Ramana, V.V. Atuchin, V.G. Kesler, V.A. Kochubey, L.D. Pokrovsky, V. Shutthanandan, U. Becker, R.C. Ewing, Growth and surface characterization of sputter-deposited molybdenum oxide thin films. Appl. Surf. Sci. 253, 5368–5374 (2007). https://doi.org/10.1016/j.apsusc.2006.12.012

    Article  CAS  Google Scholar 

  27. J.G. Choi, L.T. Thompson, XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 93, 143–149 (1996). https://doi.org/10.1016/0169-4332(95)00317-7

    Article  CAS  Google Scholar 

  28. Q. Huang, S. Hu, J. Zhuang, X. Wang, MoO3-x based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem.—A Eur. J. 18, 15283 (2012). https://doi.org/10.1002/chem.201202630

    Article  CAS  Google Scholar 

  29. K. Srinivasarao, B. Ra**i Kanth, P.K. Mukhopadhyay, Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO3 films. Appl. Phys. A Mater. Sci. Process. 96, 985 (2009). https://doi.org/10.1007/s00339-009-5132-3

    Article  CAS  Google Scholar 

  30. A. Kumar, S.N. Singh, Jyoti, S. Tomer, Vandana, S.K. Srivastava, M. Dutta, P. Pathi, A novel analytical method for determination of diode parameters from the dark forward I-V characteristics of a silicon solar cell. Phys. Scr. 98, 090001 (2023). https://doi.org/10.1088/1402-4896/ace55d

    Article  Google Scholar 

  31. H.H. Gullu, D.E. Yildiz, O. Surucu, M. Parlak, Frequency effect on electrical and dielectric characteristics of HfO2-interlayered Si-based Schottky barrier diode. J. Mater. Sci. Mater. Electron. 31, 9394 (2020). https://doi.org/10.1007/s10854-020-03479-4

    Article  CAS  Google Scholar 

  32. M. Gülnahar, H. Nasser, A. Salimi, R. Turan, On the electrical and charge conduction properties of thermally evaporated MoOx on n- and p-type crystalline silicon. J. Mater. Sci. Mater. Electron. 32, 1092 (2021). https://doi.org/10.1007/s10854-020-04884-5

    Article  CAS  Google Scholar 

  33. M.M. Makhlouf, H. Khallaf, M.M. Shehata, Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application. Appl. Phys. A 128, 98 (2022). https://doi.org/10.1007/s00339-021-05215-z

    Article  CAS  Google Scholar 

  34. Ç. Çetinkaya, Frequency effect on electrical and dielectric performance of Au/n–GaAs structure with RF sputtering MoO3 interfacial layer. J. Mater. Sci. Mater. Electron. 33, 16597 (2022). https://doi.org/10.1007/s10854-022-08556-4

    Article  CAS  Google Scholar 

  35. H. **ao, S. Huang, Frequency and voltage dependency of interface states and series resistance in Al/SiO2/p-Si MOS structure. Mater. Sci. Semicond. Process. 13, 395 (2010). https://doi.org/10.1016/j.mssp.2011.05.009

    Article  CAS  Google Scholar 

  36. Z. Çaldıran, L.B. Taşyürek, Y. Nuhoğlu, The effect of different frequencies and illuminations on the electrical behavior of MoO3/Si heterojunctions. J. Mater. Sci. Mater. Electron. 32, 27950 (2021). https://doi.org/10.1007/s10854-021-07176-8

    Article  CAS  Google Scholar 

  37. D. Ahiboz, H. Nasser, R. Turan, Admittance analysis of thermally evaporated-hole selective MoO3 on crystalline silicon. Proc. 2016 Int. Renew. Sustain. Energy Conf. IRSEC 2016 (2017). https://doi.org/10.1109/IRSEC.2016.7983991

    Article  Google Scholar 

  38. E. Nicollian, J. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley-Interscience: John Wiley & Sons, New York, 1982)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-National Physical Laboratory, New Delhi, for the experimental facilities. The author Abhishek Kumar gratefully acknowledges the support of Ministry of New and Renewable Energy (MNRE), Govt. of India for providing NREF fellowship (Ref. No. 10/2(2)2017-HRD, Dt. 30.03.2018).

Funding

This work is supported by the Ministry of New and Renewable Energy India, 342-12/5/2019-HRD to Abhishek Kumar.

Author information

Authors and Affiliations

Authors

Contributions

AK: Writing—original draft, Investigation, Data curation, Conceptualization. V: Review & Editing, Supervision. MD: Review & Editing. SKS: Review & Editing. PP: Review & Editing, Data curation, Supervision, Resources.

Corresponding author

Correspondence to Prathap Pathi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Vandana, Dutta, M. et al. Interface study of molybdenum oxide thin films on n- and p-type crystalline silicon surface. J Mater Sci: Mater Electron 35, 472 (2024). https://doi.org/10.1007/s10854-024-12151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12151-0

Navigation